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ABSTRACT 

 Configural, coordinate, and holistic representations have all been 

proposed to explain why face recognition is more disrupted by inversion than 

other stimuli.  The current study attempted to determine the nature of the 

representation that causes the face inversion effect.  Experiments 1 and 2 

compared the planar rotation functions for face, animal, and object recognition in 

order to determine whether the rotation function for faces was qualitatively 

different than the rotation functions for animals and objects.  Experiment 3 

examined the inversion effects produced by manipulating the number of features 

present in a face.  Experiment 4 tested whether face like inversion effects could 

be found for houses that, like faces, shared the same structural description. The 

results of Experiments 1 and 2 showed that the planar rotation function for faces 

is qualitatively different (steeper) than the rotation functions for animals and 

objects.   Experiment 3 found inversion effects for features of faces removed 

from the context of a whole face that grew larger as the number of features in 

the face increased.  Experiment 4 found inversion effects for house stimuli that 

also increased as the number of features to be coded increased.  The current 

set of experiments suggests that the face inversion effect is due to the precision 

required for the discrimination of objects, the amount of visual information to be 

coded by a coordinate representation, and the amount experience one has with 

forming a coordinate representation of an object from a particular orientation. 
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INTRODUCTION 

 In the past three decades scientists have made considerable progress in 

understanding the human species in a number of areas: geneticists have 

mapped the human genome, molecular biologists have made considerable 

progress in understanding various cancers and diseases, and the advances of 

computer technology have provided researchers with the ability to record, model, 

and analyze data in ways that would not have been possible thirty years ago.  

Despite the considerable progress scientists have made, scientists still do not 

completely understand how the neural processes underlying human perception 

and cognition are performed.  Currently vision scientists do not agree on the 

number of specialized processes required to perform various types of object 

recognition.  One area of considerable debate is whether or not two or more 

visual recognition systems are required to perform different types of object 

recognition.  The current paper will review the evidence for different types of 

object recognition processing systems, discuss theories as to what those 

processing systems represent, and experimentally test the validity of the visual 

recognition systems posited by researchers. 

Behavioral Dissociations 

 A number of behavioral studies suggest that basic-level object recognition 

differs from face recognition.  “Basic-level” refers to the categorization level at 

which people tend to classify a presented object (Rosch, Mervis, Johnson, & 

Boyes-Braem, 1976; Rosch & Mervis, 1981).  For example, if one were to 

present a picture of a glass to individuals and asked them to name the object, 
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they would say, “glass”.  Behavioral experiments have found that humans have 

great difficulty recognizing faces, but not objects, that have been inverted. This 

phenomenon is called the face inversion effect (Valentine, 1988; Yin, 1969; 

1970).  Further evidence of differences between face and basic-level object 

recognition is that photographic negatives of faces are more difficult to recognize 

than normal photographs of faces, however, researchers do not find significant 

impairments in recognition of photographic negatives of objects (Galper, 1970; 

Galper & Hochberg, 1971).  Finally, researchers using the preferential looking 

paradigm (Fantz, 1958, 1965) have found that infants will look at faces longer 

than non-face objects (Maurer & Barrera, 1981). 

Neurophysiological Dissociations 

In addition to the extensive behavioral evidence suggesting differences 

between face and basic-level object recognition, a number of researchers have 

examined whether dissociations could also be observed in the nervous system.  

Researchers have found dissociations between face and basic-level object 

recognition using brain damaged patients, event-related potentials (ERPs), single 

unit recordings, neuroimaging, and laterality studies.  The next sections will 

discuss each of these paradigms in further detail.  

Agnosia & Prosopagnosia 

 Researchers have found that certain lesions to the brain can produce 

different types of visual recognition deficits (for review, see Farah, 2004).  In 

particular, researchers have reported a distinct population of brain-damaged 

patients called visual form agnosics (Benson & Greenberg, 1969) who are 
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impaired in basic-level object recognition.  Another distinct population of brain-

damaged patients called prosopagnosics (Bodamer, 1947) are impaired in face 

recognition, but retain the ability to perform most forms of object recognition. 

 Visual Form Agnosia is a deficit in which brain damaged patients retain 

elementary visual functions (e.g., they have relatively normal visual acuity, depth 

perception, motion perception, and color vision), but are impaired in their ability 

to recognize, copy, match, and discriminate basic-level objects (Farah, 2004).  

Visual form agnosia typically results from carbon monoxide poisoning (Milner et 

al., 1991), mercury poisoning (Landis, Graves, Benson, & Hebbon, 1982), or 

blunt force trauma (Gelb & Goldstein, 1918) that produces brain damage to 

posterior regions of the cerebral cortex resulting in bilateral damage to the 

occipital lobes and proximal regions.  

Prosopagnosia is a deficit in which brain-damaged patients retain the 

ability to recognize basic-level objects, but are impaired in their ability to 

recognize faces (for review, see Mayer & Rossion, 2007).  Prosopagnosia often 

results from bilateral temporo-occipital lesions (Damasio, Damasio, & Van 

Hoesen, 1982), although prosopagnosia can also result from unilateral damage 

to the right temporo-occipital cortex (De Renzi, 1986a;1986b; Wada & 

Yamamota, 2001).  Prosopagnosia is typically caused by posterior cerebral 

artery infarcts (Brand, Steinke, Thie, Pessin, & Caplan, 2000) and head trauma 

(Mayer & Rossion, 2007). 

Research suggests that object agnosia and prosopagnosia are relatively 

dissociable.  For example, researchers have reported object agnosics that retain 
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the ability to recognize faces (Humphreys & Rumiati, 1998; Moscovitch, Winocur, 

& Behrmann, 1997; Rumiati, Humphreys, Riddoch, & Bateman, 1994), and other 

researchers have described of some prosopagnosics who are impaired in face 

recognition, but can perform most forms of object recognition (De Renzi, 1986; 

Farah, Levinson, & Klein, 1995; McNeil & Warrington, 1993; Sergent & Signoret, 

1992).  Although prosopagnosics can perform basic-level object recognition, 

many prosopagnosics exhibit significant deficits when discriminating objects that 

are visually similar.  For example, prosopagnosics often have difficulty 

discriminating different four legged animals, currencies, plants, and buildings 

sharing the same general features (Farah, 2004; Mayer & Rossion, 2007).   

A number of researchers have developed theories to explain the other 

sorts of recognition tasks (beyond face recognition) that are impaired in 

prosopagnosia. Some researchers have proposed that the deficits observed in 

prosopagnosics reflect a general deficit in the ability to differentiate biological 

visual stimuli (Cappa, Frugoni, Pasquali, Perani, & Zorat, 1998; Caramazza & 

Shelton, 1998; Chao, Martin, & Haxby, 1999).  Support for the biological 

hypothesis is provided by the fact that the most frequently co-occuring symptoms 

in prosopagnosia is difficulty discriminating different animals (Bornstein, Stroka, 

& Munitz, 1969).   

Although prosopagnosics do have difficulty in visually recognizing certain 

classes of biological stimuli, the biological hypothesis does not fully explain the 

sorts of visual impairments seen in prosopagnosics.  For example, Damasio, 

Damasio, and Van Hoesen (1982) reported that the prosopagnosics they tested 
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could always discriminate biological stimuli that had unique structural 

descriptions (e.g., they could discriminate visually similar objects, such as a owl 

from a horse).  Furthermore, Damasio et al. noted that the prosopagnosics they 

tested displayed impairments in recognition of non-biological stimuli such as 

differentiating different cars.  Damasio et al. posited that the deficits observed in 

prosopagnosia are more accurately portrayed as an impairment in the ability to 

recognize and differentiate different visual stimuli that require distinguishing 

between two members of the same basic-level category (i.e., subordinate level 

recognition: discriminating objects within the same basic-level category). One 

limitation to this subordinate recognition hypothesis is that prosopagnosics often 

have difficulty recognizing visual stimuli that do not belong to the same 

subordinate class.  For example, prosopagnosics have difficulty discriminating 

different four legged animals that do not belong to the same basic-level category 

(e.g., discriminating a horse from a donkey; Mayer & Rossion, 2007).   

More recently, researchers have posited that the deficits observed in 

prosopagnosia reflect impairments in tasks at which the individual has acquired 

visual expertise for a given class of objects (Diamond & Carey, 1986; Gauthier, 

Sudlarski, Gore, & Anderson, 2000; Gauthier & Tarr, 1997).  Rather than positing 

that face recognition is “special”, the expert recognition hypothesis posits that 

participants use the face recognition system, which is impaired in 

prosopagnosics, when discriminating visual objects within a class for which the 

individual has acquired expertise.  “Greeble” studies have provided some of the 

most convincing data for the expert recognition hypothesis (Gauthier et al., 2000; 
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Gauthier & Tarr, 1997; Richler, Bukach, & Gauthier, 2009).  Greebles are novel 

homogeneous visual stimuli that have been used to show that non-face stimuli 

can exhibit similar patterns of results in research paradigms that have been used 

to demonstrate that face recognition is unique.  A limitation of the expertise 

recognition hypothesis is that prosopagnosics are often impaired at visual tasks 

in which they would not be considered an expert in (e.g., some prosopagnosics 

are impaired in differentiating different plants, but were not in any way “plant 

experts”; Damasio et al., 1982).   

None of the aforementioned theories can explain why prosopagnosics are 

commonly impaired in the recognition of visually similar non-face stimuli.  One 

common theme from the literature on prosopagnosics is that they have difficulty 

in discriminating and recognizing visual stimuli that share common structural 

descriptions (Biederman, 1987).  In theories positing a structural description, the 

relations among the parts of an object are coded using broad categories rather 

than specific values, such as the relative position (above, “below”, and “side of”), 

size (“larger than”, “smaller than”, and “equal to”) and orientation of the relations 

to one another (“parallel to”, “perpendicular to”, and “oblique to”).  Casner and 

Cooper (2006) proposed that the recognition system impaired in prosopagnosics 

is used to discriminate objects sharing the same structural description.  Support 

for this hypothesis is provided by researchers who have found that 

prosopagnosics they have tested are largely impaired in recognition tasks in 

which the structural descriptions of the objects to be compared do not differ 

(Barton, Cherkasova, Press, Intriligator, & O’Connor, 2004; Levine & Calvanio, 
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1989).   

In summary, although researchers agree that the deficits observed in 

object agnosia and prosopagnosia differ qualitatively, researchers have not 

reached an agreement as to what the differences reflect. 

ERP Studies 

 In the past few decades, researchers using event-related potentials 

(ERPs) have presented a number of studies that suggest that the temporal 

processing of face recognition differs from that of basic-level object recognition.  

ERPs are a measure of brain activity acquired by averaging multiple 

electroencephalography  (EEG) responses when performing a particular task or 

when presented with a stimulus of interest.  An ERP component is an identifiable 

part of the larger ERP wave that is presumed to represent a particular stage of 

neurophysiological processing.  Researchers have found at least three separate 

ERP components that occur during tasks involving face processing that are 

absent or attenuated during tasks involving basic-level objects. 

The P1 component 

 The P1 is a positive visual ERP component that appears to be generated 

from the striate and extrastriate cortex approximately 100-120 ms following the 

presentation of visual stimuli (Gonzales, Clark, Fan, Luck, & Hillyard, 1994).  Itier 

and Taylor (2002) found that the amplitude of the P1 component was significantly 

larger when participants viewed face rather than non-face stimuli.  Although the 

functional significance of the P1 component in face processing remains unclear, 

researchers have generated various hypotheses as to what the P1 differences 



www.manaraa.com

                                                                                                        
  

 

8 

found between faces and non-face objects represent.  Itier and Taylor (2002) 

proposed that the P1 component may reflect an early global response to faces—

possibly representing faces holistically.  Rossion et al. (1999) observed that the 

P1 component’s amplitude was larger when participants performed a face 

recognition task than when they performed a gender discrimination task and 

suggested that the observed difference reflected task difficulty.  Lastly, Doi, 

Sawada, and Masataka (2007) proposed that the observed differences between 

faces and non-face stimuli might reflect the initial processing of eye-gaze.The 

VPP and the N170 components   

The vertex positive potential (VPP) and N170 components have been two 

of the most studied face processing components.  Jeffreys (1989) compared 

participants’ ERP responses to face and non-face stimuli and found that faces 

elicited a more positive deflection than non-faces approximately 150-200 ms after 

stimulus onset at central midline electrodes of the scalp that he named the VPP.  

More recently, researchers recording at electrodes over the occipito-temporal 

regions of the scalp have reported a negative wave that begins around 170 ms 

after the visual presentation of a face that was absent (or attenuated) for visually 

presented non-face stimuli (Bentin, Allison, Puce, Perez, & McCarthy, 1996; 

George, Evans, Fiori, Davidoff & Renault, 1996).  Several researchers have 

proposed that the vertex positive potential and the N170 could arise from the 

same neural generator and that they are merely opposite sides of the same 

dipole (George et al., 1996; Itier &Taylor, 2002; Joyce & Rossion, 2005; Luck, 

2005; Rossion et al., 1999). 
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Converging evidence suggests that the N170 component reflects 

structural encoding of faces (such as computing the location of each visual 

primitive in a face relative to one another) rather than the recognition of individual 

faces.  For example, a number of studies have failed to find differences between 

familiar and unfamiliar faces in N170 amplitude and/or latency (Eimer, 2000; 

Rossion et al., 1999).  A recent study found hemispheric differences between 

configural–change face tasks (discriminating two faces in which one part differs 

in length) and featural-change face tasks (discriminating faces in which the 

identity of one feature has changed; Scott & Nelson, 2006).  Scott and Nelson 

reported that the N170 amplitude for configural-change tasks was greater in the 

right hemisphere, whereas the N170 for featural change tasks was greater in the 

left hemisphere.  Given these results it is possible that the N170 observed in 

each cerebral hemisphere reflects different forms of face processing.  

 In contrast to researchers who posit the selectivity of the N170 to facial 

stimuli, Thierry, Martin, Downing, and Pegna (2007) posit that the N170 is an 

artifact of differences in interstimulus perceptual variance (ISPV) between faces 

and non-face stimuli.  What Thierry et al. meant by ISPV is that if all the face 

stimuli from the previous ERP studies were averaged, the resulting image would 

still be recognizable as a face.   However, if the non-face stimuli from the 

previous ERP studies were averaged, the resulting image would not be 

recognizable as any particular object.  Thus, the faces in previous studies were 

more visually similar than the non-face objects.  Thierry et al. found that the 

amplitude of the N170 component was reduced when the ISPV was high (i.e., the 
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objects are visually dissimilar) compared to when it was low (i.e., the objects are 

visually similar) for both pictures of faces and non-face objects.  However, the 

N170 amplitude was greatest for low ISPV face stimuli.  The finding that low 

ISPV would increase the amplitude of the N170, is consistent with Cooper and 

Brook’s (2004) proposal that the face recognition system is used for 

differentiating visual stimuli that share structural descriptions because stimuli that 

share structural descriptions will have very low IPSV under Thierry et al.’s 

definition.   

Researchers have found that the amplitude and latency of the N170 can 

be modulated by expertise (Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999; 

Tanaka & Curran, 2001; Gauthier, Curran, Curby, & Collins, 2003; Busey & 

Vanderkolk, 2005; Rossion, Collins, Goffauz, & Curran, 2007). Tanaka and 

Curran (2001) found the N170 component was earlier when bird and dog experts 

performed a categorization task of objects within their domain of expertise 

relative to outside their domain of expertise.  These results suggest that expertise 

for classes of objects sharing structural descriptions (i.e., birds and dogs) can 

produce N170 components similar to the N170 observed for faces.  

Taken collectively, the ERP literature on face processing shows that there 

are differences in certain ERP components for face and non-face stimuli.  

Single Unit Recordings 

 Studies using single unit recordings (i.e., recording the electrical activity of 

individual neurons) in macaques have found that certain regions of the macaque 

brain contain neurons that fire more to faces than to non-face stimuli (for a 
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review, see Rolls, 2007).  Baylis, Rolls, and Leonard (1987) recorded from more 

than 2600 neurons in architectonically defined visual areas of macaques and 

found that as many as 20% of neurons in the superior temporal sulcus (STS) and 

TE (analogous to the inferior temporal cortex in humans; Orban, Van Essen, & 

Vanduffel, 2004) were more selective to faces than to non-face stimuli.  

Interestingly, Baylis et al. (1987) reported that the face selective neurons were 

widely distributed amongst neurons that were not face selective throughout the 

temporal cortex of macaques.  Considerable research has found that neurons 

that respond more selectively to facial expression are more likely to be found in 

the STS (Desimone, 1991; Hasselmo, Rolls, & Baylis, 1989), whereas neurons 

that respond selectively to an individual face were more likely to be found in TE 

(Hasselmo et al., 1989; Rolls, 2000).   

 Although regions of TE contain neurons that are selective to faces, 

researchers have also used single unit recordings to demonstrate that regions of 

TE contain neurons that selectively respond to certain forms of complex objects 

rather than to faces, single shapes, or visual gratings (Gross, 1992; Tanaka, 

1993; for review see Tanaka, 1996).  For example, Tanaka (1993) found that 

area TE of the inferotemporal cortex of macaques displayed some degree of 

columnar organization for complex object features (i.e., columns of cells 

responding to similar shapes are found close to one another).  The columnar 

organization found by Tanaka was not as pronounced as that observed by Hubel 

and Wiesel (1959) in layer 4 of the primary visual cortex.  Consistent with Baylis 

et al. (1987), not all of the neurons recorded by Tanaka (1993) within a given 
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area of TE were selective for a particular complex object.  Research has shown 

that as one moves anteriorly through IT, the cells require increasingly more 

complex stimuli to activate them (Gross, 1992; Tanaka, 1993). 

 Some of the face selective and the non-face selective cells in TE show 

viewpoint dependence while others show at least some degree of viewpoint 

invariance.  Specifically, researchers have found that some cells will fire to 

several different depth or planar rotations of the same face (Hasselmo, Rolls, 

Baylis, & Nalwa, 1989) or non-face object (Booth & Rolls, 1998; Logothetis & 

Sheinberg, 1996). 

 Researchers, recording from a number of face selective neurons in TE, 

have demonstrated that the pattern of neural firing from the face selective 

neurons differs reliably from one individually presented face to another (Rolls, 

2000).  Furthermore, the firing pattern of these cells allowed researchers to 

reliably differentiate which face was presented (for review see Rolls, 2007).  

Extensive research examining the firing properties of neurons in TE suggests 

that visual representations are the product of the differential firing properties of 

many neurons rather than the firing properties of a single neuron (Gross, 1992; 

Rolls, 2000; Rolls, 2007).  Rolls (2007) states that based on the response 

properties of the face selective and non-face selective cells in TE, there is no 

reason to suppose that the coding of faces is qualitatively different then the 

coding of non-face stimuli.  

Neuroimaging Studies 

 A number of studies using functional magnetic resonance imaging (fMRI) 
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techniques have presented data that suggest that different regions of the brain 

are more active for some types of visual recognition tasks than others.  fMRI is 

an imaging technique that relies on the differences in magnetic properties 

between oxygenated hemoglobin and deoxygenated hemoglobin to determine 

which regions of the brain are absorbing greater quantities of oxygen during a 

particular task (Poldrack, Mumford, & Nichols, 2011). In theory, the areas of the 

brain that have greater quantities of deoxygenated hemoglobin have absorbed 

more oxygen as a result of that particular task’s demands (i.e., those areas were 

more activated). 

Face-selective Superior Temporal Sulcus (fSTS)   

 Consistent with single unit recordings from the superior temporal sulcus of 

macaques (Desimone, 1991; Perrett et al., 1991), researchers using fMRI in 

humans have found a region of the superior temporal sulcus that is more active 

for face than non-face stimuli that has been named the face-selective superior 

temporal sulcus (fSTS; see Figure 1 for location; Allison, Puce, & McCarthy, 

2000; Hoffman & Haxby, 2000).  The fSTS appears to be more involved in the 

perception of eye-gaze and facial expression than in the recognition of faces 

(Allison et al., 2000; Hoffman & Haxby, 2000).  In fact, a recent study reported 

that the fSTS was activated by the directional information from eye gaze but not 

from the physical properties of the eyes (e.g., the shape of the eyes; Materna, 

Dicke, & Their, 2008). 
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Figure 1.  A display of the three face selective areas of the cerebral cortex observed in 
fMRI studies (taken from Kanwisher & Yovel, 2006).  As previously noted, the right 
hemisphere displays greater activation in the occipital face area (OFA) and FFA than the 
left hemisphere.  
 
Fusiform Face Area 

 Kanwisher, McDermott, and Chun (1997), using fMRI, reported a region 

in the fusiform gyrus that displayed greater activity during passive viewing when 

subjects viewed faces than when viewing non-face objects that Kanwisher et al. 

named the region the fusiform face area (FFA; see Figure 1 for location).  

Sergent, Ohta, and Macdonald (1992) have reported similar findings using 

positron emission tomography imaging.  Activity in the FFA is greater in the right 

hemisphere than in the left when an individual is viewing faces (for review see 

Kanwisher & Yovel, 2006).  Kanwisher et al. claimed that the FFA was “a module 
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for face processing”.  Researchers have questioned the selectivity of the FFA for 

faces, however.  Researchers (Gauthier et al., 1997; Gauthier et al., 2000) have 

posited that the FFA is not a module for face processing per se, but rather 

mediates the processing of objects for which the participant has acquired 

expertise.  Gauthier et al. (2000) conducted a study in which bird experts and car 

experts performed object recognition both within and outside their area of 

expertise.  Gauthier et al. reported that the FFA was activated more when 

participants performed object recognition within their area of expertise.  Grill-

Spector et al. (2004) reported that although the FFA was activated in experts 

while they performed object recognition, its activity level did not correlate with 

their performance on the task.  Nonetheless, Grill-Spector et al. (2004) reported 

that, in the same set of subjects, the FFA did correlate with the ability to perform 

face recognition.  In contrast to the results of Grill-Spector et al., Harley et al. 

(2009) examined the performance differences between expert and novice 

radiologists in identifying abnormalities in x-ray images.  Harley et al. found that 

although there was not a reliable difference in the FFA activation between expert 

and novice radiologists, the activation of the FFA was highly correlated with 

behavioral performance for experts but not for novices.  

Researchers have begun to examine how the manipulation of a face’s 

parts (e.g., face, mouth, and nose) and how the manipulation of a face’s 

configuration (e.g., the spacing between the parts of a face) affects activity in the 

FFA and other areas involved in visual processing (Lerner, Hendler, Ben-Bashat, 

Harel, & Malach, 2001; Rossion et al., 2000; Rotshtein, Geng, Driver, & Dolan, 
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2007; Yovel & Kanwisher, 2004).  There currently exists no clear consensus on 

the precise anatomical locations that respond to changes in features and those 

that respond to changes in the configuration of features, as indicated by fMRI.  

For example, some studies have found that part changes for faces (and objects) 

increase activity in the lateral occipital cortices (LOC, Lerner et al., 2001; Yovel & 

Kanwisher, 2004), and others have found increased activity for part changes in 

the left FFA (Rossion et al., 2000).  For configuration changes, some researchers 

have reported increased activity bilaterally in the fusiform gyrus (Lerner et al., 

2001), while others found activity unilaterally in the right FFA (Rossion et al., 

2000), and still others failed to find any effect of configuration changes on activity 

in the FFA compared to part changes (Yovel & Kanwisher, 2004).  More recently, 

Rotshtein et al. (2007) found that the nature of the task can differentially affect 

fMRI activity.  Rothshein et al. found that part changes to faces correlated with 

greater activity in the LOC during face discrimination tasks, while configuration 

changes correlated with greater activity in the right FFA during face recognition 

tasks. 

Occipital Face Area 

The occipital face area (OFA) is one of the least understood face-selective 

regions in humans (see Figure 1 for location; Gauthier et al., 2000; Puce, Allison, 

Asgari, Gore, & McCarthy, 1996).  The OFA is a region in the LOC that displays 

greater activation for faces or parts of faces than for non-face objects or parts of 

non-face objects (for reviews see Atkinson & Aldophs, 2011; Pitcher, Walsh, & 

Duchaine, 2011).  The OFA tends to be larger in the right hemisphere than in the 
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left (Atkinson & Aldophs, 2011), and at present, researchers do not agree on the 

functional role of the OFA (Atkinson & Aldophs, 2011).   

Some research, using transcranial magnetic stimulation (TMS), has 

provided data that suggest the OFA represents the features of a face (e.g., nose, 

eyes, and mouth; Pitcher et al., 2011).  TMS is a research technique in which 

brief magnetic pulses are applied to a region of interest on the scalp in order to 

briefly disrupt neural signaling in a localized area of interest (Bolognini & Ro, 

2010).  Pitcher, Walsh, Yovel, and Duchaine (2007) applied repeated TMS to the 

right OFA while participants performed a feature discrimination task for faces and 

houses and found that TMS to the right OFA impaired participants’ ability to 

discriminate features of faces but not their ability to discriminate features of 

houses.  Further, Pitcher et al. (2007) reported that participants did not show 

deficits in discriminating the distances between features of the face when TMS 

was applied to their right OFA. As a result of these studies, Pitcher et al. (2011) 

posited that the OFA is involved in the initial coding of the features of a face 

(rather than coding the distances between features) and precedes the activity 

observed in the FFA.    

 A growing body of literature, using fMRI, suggests that the OFA and the 

FFA appear to be more active when participants view faces rather than non-face 

objects.  Rhodes, Michie, Hughes, and Byatt (2009) posited that the OFA also 

plays a role in the coding of the spatial relations of a face, while others posited 

that the OFA and FFA are not face selective processing regions, but are involved 
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in individuating specific stimuli from within a given category (Haist, Lee,  & Stiles, 

2010). 

Laterality Studies 

 The fMRI literature shows that regions of the right cerebral hemisphere 

appear to be more involved in the recognition of faces than most non-face 

objects.  In addition to neuroimaging studies, researchers have performed 

laterality studies to investigate whether face recognition tasks are performed 

faster in the right hemisphere.  Consistent with the fMRI literature, many 

researchers have found that face recognition is performed faster when presented 

to the left visual field (LVF)/right hemisphere (RH) than to the right visual field 

(RVF)/left hemisphere (LH; for review, see Ellis & Young, 1989; Hillger & Koenig, 

1991; Leehey, Carey, Diamond, & Cahn, 1978; Levine Banich, & Koch-Weser, 

1988).  In contrast, most forms of basic-level object recognition (i.e., 

discriminating objects with different structural descriptions) fail to display laterality 

effects (Biederman & Cooper, 1991a; Bryden & Rainey, 1963; Kimura & 

Durnford, 1974; Levine & Banich, & Koch-Weser, 1982; Young, Bion, & Ellis, 

1980). 

Although most forms of basic-level object recognition do not show 

hemispheric differences in visual processing speed, a number of studies suggest 

certain forms of object recognition may be partially reliant on the processing the 

RH subserves.  Specifically, many lines of research suggest that there are 

hemispheric differences in the processing of categorical relations (i.e., judging 

the relative positions of visual primitives to one another) and coordinate relations 
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(i.e., judging the precise metric distances of the visual primitive from one 

another).  In particular, studies that have required participants to compute the 

relations between objects have shown different hemispheric effects that 

depended on whether or not the task required categorical or coordinate 

processing (Hellige & Michimata, 1989; Kosslyn, 1987; Kosslyn, Chabris, 

Marsolek, & Koenig, 1992; Kosslyn et al., 1989; Rybash & Hoyer, 1992; Sergent, 

1991).  Tasks in which participants were required to code the coordinate 

information (i.e., exact metric distances) between two objects, such as deciding 

whether a dot was within 3 mm of a line, show a strong RH advantage.  In 

contrast, tasks in which participants are required to code categorical information 

between two objects, such as deciding whether a dot was above or below a line, 

have either shown a small RH advantage (Hellige & Michimata, 1989; Kosslyn et 

al., 1989) or no hemispheric advantage (Rybash & Hoyer, 1992; Sergent, 1991).  

 In recent years, researchers have examined whether the RH advantage 

observed for coordinate tasks that required participants to judge the coordinate 

relations between two objects could also be observed in object recognition tasks 

in which coding of the precise coordinate locations of an object’s primitives would 

be required for object recognition.  A number of studies have found a RH 

advantage for tasks that require a participant to code the coordinate relations of 

an object (Burgund & Marsolek, 2000; Brooks & Cooper, 2006; Cooper & Brooks, 

2004; Laeng, Zarrinpar, & Kosslyn, 2003; Marsolek, 1999; Saneyoshi & 

Michimati, 2009) and a LH advantage for tasks that only require participants to 

code the categorical relations of an object (Burgund & Marsolek, 2000; Laeng, 
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Zarrinpar, & Kosslyn, 2003; Marsolek, 1999; Saneyoshi & Michimati, 2009).  

Basic-Level Object Recognition 

 Hitherto, the paper has only discussed dissociations between face 

recognition and basic-level object recognition without discussing theories about 

how the representations of basic-level objects and faces differ.  This section will 

discuss theories about how basic-level objects are represented for the purpose of 

recognition. 

First-order Relations 

 Diamond and Carey (1986) proposed that most forms of basic-level 

recognition are performed using first-order relations.  Diamond and Carey posited 

that objects that do not share what they call, “the same configuration” can be 

distinguished from one another using first-order relations, which are “the spatial 

relations among similar parts” (p110). Diamond and Carey used Rosch’s (1978) 

superimposition test when determining whether or not an object shares the same 

configuration.  Rosch classified two objects as having different configurations if 

the outlines of two objects superimposed have very little overlap (e.g., 

superimposing a dog and house).  Diamond and Carey’s example of first-order 

relations is “the distance between a foreground rock and a background tree” in a 

landscape.  A limitation of Diamond and Carey’s first-order relations is that they 

merely give an example to explain first-order relations without giving a formal 

definition.  Recently, Maurer, Le Grand, and Mondloch (2002) defined the first 

order relations of a face as “seeing a stimulus as a face because its features are 

arranged with two eyes above a nose, which is above a mouth”, which appears 
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to be contrary to Diamond and Carey’s definition, which involved distances 

between primitives rather than relative positions.   Like Diamond and Carey, 

Maurer et al. do not mention exactly how first-order relations are coded.  

Recognition by Components 

Biederman (1987) proposed that the human visual system performs basic-

level object recognition using a representation that codes an object’s parts and 

the categorical relations between the parts.  Such a representation is called a 

structural description (Biederman, 1987).  In theories positing a structural 

description, the relations among the parts of an object are coded using broad 

categories rather than specific metric distances.  Hummel and Biederman (1992) 

proposed that the relations among an object’s parts are defined by their relative 

position (“above”, “below”, and “side of”), size (“larger than”, “smaller than”, and 

“equal to”) and orientation to one another (“parallel to”, “perpendicular to”, and 

“oblique to”).  For example, in Biederman’s (1987) theory, the coffee mug in 

Figure 2 would be coded as a “cylinder with a curved cylinder to the side”, 

whereas the bucket in Figure 2 would be coded as a “cylinder with a curved 

cylinder above”. 
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Figure 2. Examples of how structural descriptions can be used to differentiate basic-level 
objects.  In a structural description theory, the mug would be coded as a “cylinder with a 
curved cylinder to the side”, and the bucket would be coded as a “cylinder with a curved 
cylinder above”.  
 

There are a number of computational advantages to using a structural 

description for object recognition.  The same structural description for an 

object can be activated regardless of an object’s size, position, and 

orientation, and recognition using structural descriptions is robust to noise 

and partial occlusion (Biederman, 1987). Biederman and Cooper (1991b) 

tested whether a structural description coding an object’s parts is activated 

during object recognition using visual priming experiments.   They found that 

the visual priming effect in their study was entirely mediated by the 

representation for an object’s parts.   

Theories About How the Representation for Recognizing Objects & Faces Differ 

 A number of theorists have attempted to describe the differences in the 

representations used to identify objects at the basic-level and faces. Configural, 
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holistic, and coordinate are three forms of representation that theorists have used 

to characterize how the representation of faces for purposes of recognition differs 

from that of objects. 

Configural and Holistic Processing 

 There is great variability in how researchers use the terms “configural” and 

“holistic”.  For example, some researchers define configural processing as a style 

of mental processing (Mauerer, Le Grand, & Mondloch, 2002; McKone, 2008), 

while others have defined configural processing as a type of information that 

codes the metric distances between the parts of an object (Leder & Carbon, 

2006).  Although many researchers use holistic and configural processing 

synonymously (for reviews see McKone & Yovel, 2009; Rossion, 2008), some 

researchers posit that holistic processing is qualitatively different from configural 

processing (Maurer et al., 2002; Tanaka & Farah, 1993).  For example, Maurer et 

al. defines holistic processing as “glueing together the features into a gestalt”(p. 

255).   

Tanaka and Farah (1993) define holistic representations as 

“representations without an internal part structure” (p. 225).  Tanaka and Farah 

posit that holistic representations code the entire face without any decomposition 

of the parts of the face.  Tanaka and Farah found that participants were better at 

identifying a part of a face when presented in the context of a whole face than 

when a part of the face was presented in isolation.  Further they argued that 

holistic representations are unique to face processing because they failed to find 

a part identification advantage for houses (e.g., performance for the recognition 
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of a “door” did not improve when it was presented in its normal location in a 

house as compared to in isolation).  

Coordinate Relations 

 A problem arises for structural description theories when an individual has 

to differentiate two objects that share the same structural description.  For 

example, structural description theories cannot explain how the visual recognition 

system can differentiate the two mugs in Figure 3.  Both mugs’ structural 

descriptions would be identical (i.e., “a cylinder with a curved cylinder to the 

side”).  Cooper and Wojan (2000) posited that object recognition tasks that 

require a participant to differentiate two objects sharing similar structural 

descriptions would rely on coordinate relations.  Coordinate relations 

representations code the precise distances of each object primitive (i.e., part) 

from a fixed reference point or set of fixed reference points. For example, Figure 

4 illustrates how a categorical representation (i.e., a structural description) and 

coordinate relations representation would code the position of my right eye (from 

the viewer’s perspective). A categorical relations representation would code my 

right eye as being, “to the side of the left eye, above and to the side of the nose, 

and above and to the side of the mouth.” In contrast, a coordinate relations 

representation would code my right eye as being 4 units below and 2.66 units to 

the right of the specified reference point. 
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Figure 3.  These mugs would not be differentiated by a structural description 
representation.  
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Figure 4. Illustration of how categorical (left picture) and coordinate relations (right picture) would 
code the position of the left eye of a face. Categorical relations would code the left eye as “side 
of” the right eye, “above” and “side of” the nose, and “above” and “side of” the mouth. In contrast, 
coordinate relations would code the left eye as 4 units below and 2.66 units to the right of the 
given reference point. 

The coordinate relations hypothesis (Cooper & Wojan, 2000) proposes 

that most basic-level object recognition tasks use a representation of shape that 

codes the spatial relations among the parts categorically, but that face 

recognition and other tasks that require discrimination between objects sharing 

the same structural description are accomplished using a representation that 

codes coordinate relations (Cooper & Wojan, 2000). A number of studies show 

that distinguishing non-face objects that share structural descriptions produce 

behavioral effects that are similar to those that are found in the face recognition 

literature (Brooks & Cooper, 2006; Cooper & Brooks 2004; Cooper & Wojan, 

2000).  For example, Cooper and Brooks (2004) found that the effects of planar 
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rotation on the recognition of animals produce a rotation function similar to that 

for recognizing faces.  Additionally, the data from ERP, prosopagnosia, single 

unit recordings, and fMRI also suggest that common neural structures are used 

when discriminating faces and when discriminating non-face objects that share 

the same structural description.  Cooper and Wojan’s coordinate relations theory, 

unlike the configural representation theory, makes specific predictions as to the 

circumstances when the representation used for basic-level object recognition 

will be used to perform a recognition task and the circumstances when the 

representation used for face recognition will be used.  The coordinate 

representation should be used any time the test requires subjects to distinguish 

stimuli sharing the same structural descriptions.  

Expertise 

A number of vision scientists stress that expertise is needed in order for 

the visual system to code the representation of non-face objects in the same 

fashion that it codes faces  (for a review, see Bukach, Gauthier, & Tarr, 2006).  

There is no doubt that experience with objects is necessary for the proper 

development of the visual system (Hubel & Wiesel, 1959; Wiesel, 1982), 

however, it is not necessarily the case that expertise with a given class of visual 

stimuli is required in order for non-face objects to display face-like properties.  

For example, when participants are asked to discriminate among different 

animals that share the same structural description, their performance is hindered 

by rotation, just as it is for faces.  The coordinate relations hypothesis can 

account for the effects of expertise if one presumes that the coordinate 
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representations used to distinguish objects that share the same structural 

description become more finely calibrated as a result of experience with making 

the discrimination.  For example, the resolution of the coordinate representations 

of dog show judges for distinguishing Labrador Retrievers may become more 

precise for those regions of the dogs where the metric variations important for 

judging the dogs occur.  

Additionally, the coordinate relations hypothesis predicts that judgments in 

a person’s area of expertise would display face-like effects only when the objects 

to be discriminated share similar structural descriptions.  For example, literate 

people have considerably more experience recognizing letters and words than 

recognizing faces, however, because different letters and words have different 

structural descriptions, the coordinate relations hypothesis would predict that 

distinguishing different letters and words would not display the behavioral effects 

associated with face recognition.  
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CURRENT STUDIES 

The current set of studies seeks to answer a number of questions 

pertaining to the differences in the representations used for basic-level object 

recognition and for face recognition.  The current studies tested whether the 

coordinate relations theory can explain the instances in which recognition of non-

face objects exhibits face-like recognition effects.   

 As noted when the neurophysiological and brain-lesion literature was 

reviewed, there is a significant amount of data demonstrating neurological 

differences in the recognition of faces and most forms of basic-level object 

recognition.  Cooper and Wojan (2000) posited that both categorical and 

coordinate representations are activated for every viewed object and that the 

nature of the object recognition task determines which representation is used.  

Specifically, Cooper and Wojan stated that a categorical representation is used 

for object recognition tasks that require participants to differentiate objects with 

different structural descriptions, and a coordinate representation is used for 

object recognition tasks that require participants to differentiate objects with the 

same structural description.  

 The purpose of the current dissertation is to determine whether a holistic 

representation, as defined by Tanaka and Farah (1993), is needed to explain the 

effects of planar rotation on the recognition of faces or whether a coordinate 

representation can explain the effects of planar rotation on the recognition of 

faces (Cooper & Wojan, 2000).  The current series of experiments used planar 

rotation in order to determine whether faces are processed qualitatively 
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differently than non-face stimuli (Experiments 1 and 2), whether a coordinate 

representation can explain the face inversion effect (Experiment 3), and if non-

face stimuli can show inversion effects similar to faces (Experiment 4). 

Planar Rotation of Faces and Objects 

 Jolicoeur (1985) reported that times to recognize objects at the basic-level 

increase as planar rotation increases, but that there is a dip in response times at 

180°.  The dip in response times at 180° has since been reproduced by a number 

of studies (e.g., Cooper & Brooks, 2004; Jolicoeur, 1988; Jolicoeur & Milliken, 

1989; McMullen & Farah, 1991; McMullen & Jolicoeur, 1990).  In contrast, 

researchers examining the effects of planar rotation on face recognition never 

find a dip in response times at 180° (Ashworth, Vuong, Rossion, & Tarr, 2008; 

Valentine & Bruce, 1988).  While some studies have found a linear relationship 

between response times to recognize faces and their degree of planar rotation 

(Ashworth et al., 2008; Valentine & Bruce, 1988), other studies have found a 

non-linear relationship between planar rotation and response times that 

resembles an inverted-U shape (Jemel, Coutya, Langer, & Roy, 2009; Rossion & 

Boremanse, 2008).  However, all studies on the effects of planar rotation on face 

recognition fail to find the dip in response times at 180° that is observed for 

basic-level object recognition. 

 The different planar rotation functions observed for basic-level object 

recognition and face recognition can be explained by the coordinate relations 

hypothesis (Cooper & Wojan, 2000).  Specifically, for tasks that require a 

participant to discriminate objects that share different structural descriptions, 
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Hummel and Biederman’s (1992) object recognition model predicts an M-shaped 

recognition time function in which reaction times to recognize an object increase 

linearly from 0° to 135° of planar rotation but then decrease after 135° until they 

reach a local minimum at 180° of planar rotation from an object’s upright 

viewpoint.  That performance is poorest at 135° of planar rotation can be 

explained by the fact that it is the point at which all of the categorical relations 

among the parts of an object are spurious (i.e., “above”, “below”, and “side of”).  

Figure 5 provides an illustration of why planar rotation of an object that is 

recognized using categorical relations would produce an M-shaped recognition 

time function.  In Figure 5, as the watering can is rotated in the picture plane, the 

cylinder and spouts’ categorical relations change from “spout side of cylinder” at 

0° to “spout above cylinder” at 90°, but return to “spout side of cylinder” at 180°.  

Although an object’s “side of” relations are restored at 180°, Cooper and Brooks 

(2004) would predict that reaction times at 180° will not dip down as far as the 

reaction times at 0° if the object contains parts with “above” and “below” relations 

because “above” and “below” relations will be reversed from upright when the 

object is upside down.  For example, in Figure 5, although the watering can’s 

“side of” relations are restored at 180° of planar rotation, the watering can’s 

cylinder and handle categorical relations are different than at 0°. Consistent with 

Hummel and Biederman’s object recognition model, Cooper and Brooks (2004) 

found an M-shaped function in response times when participants had to 

recognize planar rotated objects that all had unique structural descriptions. 
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Figure 5.  The watering can is rotated in the picture plane in 90° increments.  The categorical 
relations of the watering can’s cylinder to the other parts change from “side of” the spout and 
“below” the handle at 0°, to “below” the spout and “side of” the handle at 90°, to “side of” the 
spout and “above” the handle at 180°. 
 In contrast, Cooper and Brooks (2004) predicted that tasks that involve 

differentiating objects with the same structural description would produce a 

monotonic increase in recognition time as the amount of planar rotation 

approaches 180°.  The monotonic increase is predicted because the primitives in 

a coordinate representation of an object become monotonically more distant from 

their stored upright representations as planar rotation approaches 180°.  
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Consistent with the coordinate relations hypothesis, Cooper and Brooks found 

that in an animal recognition task that required participants to name animals with 

similar structural descriptions, reaction times showed a monotonic increase as 

the amount of rotation approached 180°. 

 Some researchers have proposed that mental rotation can be used to 

explain the response time functions observed for the recognition of objects 

rotated in the picture plane (Shepard & Metzler, 1971).  Shepard and Metzler’s 

mental rotation model posits that participants mentally rotate objects to their 

upright orientation prior to object recognition.  If subjects are performing mental 

rotation of an object prior to object recognition, their reaction time functions 

should show a linear increase from 0° to 180° of rotation and then a linear 

decrease from 180° to 360° because the time required to mentally rotate an 

object is a linear function of the amount of rotation the object has undergone 

(Shepard & Metzler, 1971).  The mental rotation model thus predicts that reaction 

time, as function of planar rotation, should resemble an inverted-V.   

 Phenomenologically, most people would concede that one can mentally 

rotate an object, however, researchers question whether mental rotation is 

needed prior to the recognition of an object rotated in the picture plane (e.g., 

Cooper & Brooks, 2004; Perett, Oram, & Ashbridge, 1998).  Perrett et al. wrote a 

critical review of the mental rotation model and presented evidence from the 

single unit recording literature to conclude that the increased reaction times 

required to recognize rotated objects can be explained by the firing properties of 

the cells in the inferior temporal lobes.  Perrett et al. posited that the speed to 
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recognize an object depends on the rate of accumulation of activity from neurons 

selective for an object.  For any familiar object, observed in its appropriate 

orientation, more neurons will be tuned to the coordinate representation of the 

object in its upright orientation than to any planar rotation of the object away from 

upright.  Perrett et al. posit that the planar rotation function in reaction times 

observed for objects can be explained by the length of time it takes for neurons in 

the inferior temporal cortex to become tuned to reach threshold for recognition of 

a given object.  Perrett et al. posited that more posterior regions from the inferior 

cortex in the visual pathway likely are tuned more to the structural description of 

an object than to the coordinate representation.  

 Another problem with the mental rotation model for basic-level object 

recognition is that, rather than an inverted-V function for the recognition of 

objects rotated in the picture plane, basic-level object recognition often displays 

an M-shaped rotation function (e.g., Cooper & Brooks, 2004; Jolicoeur, 1985).  

However, the inverted-V function, posited by the mental rotation model, is 

consistent with the planar rotation functions observed by some researchers in 

face recognition tasks (e.g., Valentine & Bruce, 1988).  Rather than a stimulus 

being mentally rotated before it is recognized, another possibility is that the 

activation level of the representations used for tasks that require discriminating 

objects with identical structural descriptions simply decreases as the Euclidean 

distance of an object’s features from their stored coordinates increases.  

Specifically, the further the visual primitives of an object are from their standard 

upright coordinates, the lower the activation level of the representation used to 
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recognize the object and, therefore, the longer recognition will take (this is called 

the Euclidean distance model).  Whereas the mental rotation model predicts an 

inverted-V function for planarly rotated objects, the Euclidean distance model 

predicts an inverted-U function.  The Euclidian distance model predicts an 

inverted-U function because as an object is initially rotated from upright, the 

Euclidean distance of the features from the original positions change rapidly, but 

as the planar rotation of an object approaches 180°, the change in its Euclidean 

distances of the features from the stored coordinates become smaller and 

smaller.  The Euclidean distance model of planar rotation is consistent with 

studies that have found an inverted-U function in reactions times for the 

recognition of faces (e.g., Ashworth et al., 2008; Jemel, Coutya, Langer, & Roy, 

2009; Rossion & Boremanse, 2008) and objects (e.g., Ashworth et al., 2008; 

Cooper & Brooks, 2004) that have been rotated in the picture plane.  Further, the 

Euclidean distance model is congruent with the single unit recording account of 

object recognition provided by Perrett et al. (1998). 

 An advantage of the coordinate relations hypothesis over the mental 

rotation model is that the coordinate relations hypothesis can explain instances in 

the planar rotation literature where researchers have found different rotation 

functions for the same set of stimuli when they changed the nature of the task 

(Jolicouer, 1988).  For example, Jolicouer (1988) had subjects perform an object 

naming task and an orientation decision task (is the object facing left or facing 

right?) on the same set of objects.  In the orientation task, subjects had to decide 

whether a rotated object would face left or right if it were in its upright orientation.  
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Jolicoeur found that the planar rotation function for reaction times in the object-

naming task resembled an M-shaped function, but the rotation function for 

reaction times in the left-right decision task resembled an inverted-V function 

(indicating that mental rotation may have been involved).  Experiments 1 and 2 

will compare the rotation functions of faces, animals, and objects determine 

whether non-face objects, that require participants to discriminate objects that 

share structural descriptions, display a rotation function similar to faces.  Further, 

Experiments 1 and 2 will attempt to replicate the M-shaped function for objects 

recognized at the basic-level. 

Face Inversion 

 A number of researchers have conducted studies examining the face 

inversion effect (which is a special case of planar rotation in which the researcher 

compares the recognition of upright (0° planar rotation) faces from the 

recognition of inverted (180° planar rotation) faces (for reviews see, Rossion, 

2008; McKone & Yovel, 2009)). Tanaka and Farah (1993) proposed that “holistic 

processing” was disrupted when faces were inverted and that holistic processing 

was unique to the recognition of upright faces (meaning holistic processing is 

activated by no other types of stimulus).  During the study phase of their 

experiment, Tanaka and Farah first had participants learn the names for a series 

of scrambled-face and whole-face stimuli.  During the test phase, participants 

then performed a feature discrimination task and a full-face discrimination task.  

In the feature discrimination task, participants were presented with an isolated 

feature of a face (e.g., a nose) they learned in the study condition and a feature 



www.manaraa.com

                                                                                                        
  

 

37 

that served as a distractor.  Participants had to indicate which of the presented 

features was part of a particular face they had learned during the study phase 

(e.g., identify “Larry’s nose”).  In the full-face condition, participants were 

presented with two faces and asked to identify which of the two faces was a 

particular face they had learned during the study phase (e.g., identify “Larry”).  In 

the full-face discrimination task the only difference between the two faces was a 

single feature (e.g., nose)—all other features and relations were held constant.  

Tanaka and Farah reported that participants were better at identifying the 

features of a face when presented in the context of a full-face than they were at 

identifying the same feature presented in isolation.  Tanaka and Farah failed to 

find the aforementioned advantage for feature identification in full-object 

recognition for scrambled faces, inverted faces, and houses.  Tanaka and Farah 

used the feature identification advantage observed when participants identified a 

face feature in its appropriate location in an upright face as evidence for a holistic 

representation of upright faces.  Tanaka and Farah defined holistic 

representations as “representations without an internal feature structure”. 

 Some researchers have proposed that disruptions in the holistic 

representation of a face are a major contributor to the face inversion effect 

(Tanaka & Farah, 1993; Maurer et al., 2002).  Consequently, if holistic 

processing were primarily responsible for the face inversion effect, then one 

would not expect significant face inversion effects for the inversion of features of 

a face removed from the context of a whole face.  Therefore, a holistic 

representation cannot explain instances in which researchers have found 
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inversion effects for isolated features (e.g., isolation of the eye and brow region) 

of a face (Leder, Candrian, Huber, & Bruce, 2001; Rakover & Teucher, 1997).  

For example, Leder et al. found inversion effects across three different face-

context conditions: eyes, eyes and nose, and eyes, nose and mouth.  

 Rather than proposing the existence of a third representation used for the 

processing of upright faces, an alternative explanation of the results obtained by 

Tanaka and Farah is that inversion of a face produces disruptions to the stored 

coordinates of the faces’ features as the Euclidean distance of a face’s features 

from their stored coordinates increases.  For example, Figure 6 presents two 

versions of a face: a three-feature face and a whole-face.  The whole-face and 

three-feature faces (e.g., two eyes and a mouth) in Figure 6 exert different 

demands on the coordinate representation system.  Whole-faces have a greater 

amount of coordinate information to be coded than three-feature faces.  When 

whole-faces are inverted, the coordinate representation of the whole-face is more 

disrupted than the coordinate representation of the three-feature face. The 

Euclidean distance model predicts that the further the visual primitives of a face 

are from their standard upright coordinates, the lower the activation level of the 

representation used to recognize the face and, therefore, the longer the 

recognition will take.  The coordinate relations model predicts that the overall 

disruption of an inverted face-image would be less for a two-feature face than a 

whole face.  As a result, the coordinate relations model would predict a greater 

face inversion effect as the number of features to be coded for a visual stimulus 

by the coordinate representation system increases.  
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Figure 6. The whole face and three-feature faces (two eyes and a mouth) above exert different 
demands on the coordinate representation system.  Whole faces have a greater amount of 
coordinate information to be coded than three-feature faces.  When whole faces are inverted the 
coordinate representation of the whole face is more disrupted than the coordinate representation 
of the two feature faces.  
 

Although most studies have found that inverting faces produces greater 

impairments in recognition than inverting non-face objects, researchers have 

found inversion effects for the recognition of certain types of non-face stimuli as 

well (McKone & Yovel, 2009).  For example, the planar rotation literature has 

found greater recognition deficits for the recognition of non-face objects sharing 

similar structural descriptions that are rotated 180° in the picture plane, when 

compared to their standard upright orientations (for review, see Graf, 2006).  
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Consistent with studies of planar rotation, researchers find face-like inversion 

effects when participants are required to differentiate objects sharing similar 

structural descriptions (e.g., differentiating different animals; Cooper & Brooks, 

2004).  Researchers have reported large inversion effects when participants 

have extensive familiarity with non-face stimuli that requires differentiating visual 

stimuli sharing similar structural descriptions.  For example, researchers have 

found inversion effects for expert dog judges (Diamond & Carey, 1986), 

participants trained to become experts in Greeble recognition (Gauthier & Tarr, 

1997), and participants trained to discriminate visually similar houses (Husk, 

Bennett, & Sekuler, 2007).   

 Experiments 3 and 4 will test the coordinate relations model’s predictions 

about the effects of inversion on a coordinate representation against Tanaka and 

Farah’s holistic model.  Experiment 3 will examine whether the inversion effect 

becomes larger as the number of features of a face to be coded by the 

coordinate representation system increases.  Experiment 4 will examine whether 

the inversion effect becomes larger as the number of features of a house to be 

coded by the coordinate representation system increases. 

Experiment 1 

Cooper and Brooks (2004) examined the effects of planar rotation 

functions for two types of recognition tasks: an animal recognition task and an 

object recognition task.  In the animal recognition task participants named 

animals that had similar structural descriptions, whereas in the object recognition 

task, participants named objects that all had different structural descriptions.  
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Consistent with the coordinate relations hypothesis (Cooper & Wojan, 2000), 

Cooper and Brooks found an inverted-U shaped rotation function in response 

times when participants named animals and an M-shaped rotation function in 

response time when participants named objects (see Figure 7).  It is possible that 

the different rotation functions observed by Cooper and Brooks, and predicted by 

the coordinate relations hypothesis (Cooper & Wojan, 2000), could explain the 

face inversion effect.  Specifically, for the recognition of faces at 180° of planar 

rotation, reaction times should be the slowest because that is the point where the 

face’s coordinate representation is most disrupted.  In contrast, for the 

recognition of basic-level objects at 180° planar rotation, reaction times would 

show a local minimum (rather than a maximum) because of the restoration of 

side of relations.  As a result, when comparing basic-level object recognition to 

face recognition at 180° planar rotation, a “face inversion effect” is observed in 

which inverted faces appear to be more affected by rotation than inverted 

objects. 
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Figure 7. The rotation function obtained by Cooper and Brooks (2004) displayed an inverted-U 
function for animal recognition and an M-shaped function for object recognition.   
 

Experiment 1 and 2 tested whether the inverted-U shaped rotation 

function observed for animal recognition by Cooper and Brook’s (2004) would be 

similar for face recognition.  Further, Experiment 1 and 2 tested whether the m-

shaped rotation function observed for objects by Cooper and Brooks could be 

replicated using objects that had unique structural descriptions.  In addition to 

using animals and objects, Experiment 1 also had participants perform a face 

recognition task in order to compare the rotation function of animals to that of 

faces to determine if the rotation functions for faces and animals differ 

qualitatively.   
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Experiment 1 differed from Cooper and Brooks (2004) in two ways.  

Participants in Experiment 1 were not required to generate names for the stimuli 

because Experiment 1 adds famous faces to the stimuli used by Cooper and 

Brooks, and previous research has established that generating names for faces 

is a difficult task (Cohen, 1990; Cohen & Faulkner, 1986; Young, Hay, & Ellis 

1985).  In Experiment 1, rather than requiring participants to verbally name the 

visual stimuli that are presented to them, participants saw a visual stimulus 

followed by a name and had to decide whether or not the name matched the 

visual stimulus.  Cooper and Wojan (2000) previously used this method 

successfully to study face recognition.  Second, whereas Cooper and Brooks had 

36 stimuli for each category of visual stimuli, Experiment 1 used 72 visual stimuli 

in each category, because, unlike Cooper and Brooks, the current study had both 

positive (same) and negative (different) trials and only data from “same” trials 

were of interest.   

If Experiment 1 replicates the rotation functions obtained by Cooper and 

Brooks (2004), then the results for the animal and object conditions should look 

similar to the hypothetical data presented Panel A in Figure 8.  If faces are 

differentially affected by planar rotation (relative to the other types of stimuli), 

then the rotation function for faces should be qualitatively different from the 

rotation functions for animals and objects (e.g., the results should look like Panel 

B in Figure 8).  However, if Experiment 1 fails to find a reliable difference in the 

rotation functions for faces and animals, then the results would suggest that there 

is not a qualitative difference in the representations used to recognize faces. 
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Figure 8.  Two graphs displaying different rotation functions predicted by the coordinate relations 
hypothesis and holistic representation hypothesis.  If a coordinate representation can be used to 
explain the rotation function of faces, then the rotation function for faces should resemble the 
rotation function for animals and there should not be an interaction (e.g., Graph A).  If faces are 
represented differently (e.g., the holistic representation hypothesis) from non-face objects, then 
the rotation function for faces should interact with the rotation function for animals (e.g., Graph B). 
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Method 

Participants  

 The participants were 144 undergraduate students from the subject pool 

at Iowa State University who participated in the experiment for course credit.  All 

subjects reported normal or corrected-to-normal vision.  The participants 

consisted of 97 females and 47 males.  The mean age of the participants was 

20.5 (SD=4.6). 

Apparatus 

Stimuli were displayed on a 20-inch LED display with a resolution of 1680 

x 1050 pixels. An Intel Core 2 Duo iMac desktop was used to present the stimuli 

and collect the data.  The experiment was presented using Superlab Pro 4.5 

software.  Responses were collected via two keys using a standard Macintosh 

keyboard that gave ± 0.5 ms response time accuracy.   

Stimuli for the experiment consisted of color photographs of 72 faces, 72 

animals, and 72 objects taken from their canonical upright view.  All stimuli had 

background visual information removed using Photoshop CS5.1.  For faces, the 

sizes of the images were standardized so that the distance from the bottom of 

the chin to the top of the hairline was 512 pixels (72 pixels per inch).  For animals 

and objects, the images were standardized so that the longest dimension of the 

photograph is 512 pixels (72 pixels per inch).  All stimuli were presented on a 

white background.   

Faces.  All the faces chosen in Experiment 1 were of famous people.  Half 

of the faces were female and the remaining half were male.  The famous faces 
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used in this experiment were chosen after a pilot study was conducted to 

determine which famous individuals were most familiar to undergraduate 

students (see Appendix A for list).   

Animals.  The animals chosen for Experiment 1 consisted of animals that 

share similar structural descriptions with another animal from a different basic-

level category (e.g., elk and deer each share similar structural descriptions; see 

Appendix B for list).  This criterion for animals eliminated certain types of animals 

from Experiment 1.  For example, a giraffe’s structural description is very 

different from the structural description of all other animals.  In order for an 

animal to be included in this experiment, the animal had to have a clear upright 

orientation (e.g., a starfish does not have a standard upright orientation).   

Objects.  The objects chosen for Experiment 1 consisted of basic-level 

objects that did not share structural descriptions with one another (see Appendix 

C for list).  In order for an object to be included in this experiment, the object 

needed to have a common upright orientation.  

Procedure 

Presentation of the stimuli was self-paced.  Participants were positioned 

so that they were approximately 42 cm away from the display.  Participants 

pressed the spacebar to begin each trial.  After the spacebar was pressed, a 

fixation cue was presented for 500 ms, followed by one of the stimuli for 250 ms, 

followed by the name of a face, animal, or object until the participant’s response.  

Participants were instructed to press the “m” key if the name presented in the trial 

matched the picture, and to press the “n” key if the name did not match the 
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picture.  For half of the trials the name matched the previously presented 

stimulus.  For the remaining half of the trials the name did not match the 

previously presented stimulus (see Figure 9 for a sample trial sequence).  For 

different face trials, the name presented for each different trial was chosen so 

that the famous name presented matched the previously presented image for 

gender and ethnicity (e.g., Barack Obama’s face was presented followed by 

Denzel Washington’s name).  For the different animal trials, the name that was 

presented for each different trial was chosen so that the name of the animal 

presented matched the presented animal image’s structural description (e.g., a 

dog was presented followed by the name “fox”).  For the different object trials, the 

name presented for each different trial was chosen so that the name of the object 

presented did not match the presented object’s structural description (e.g., a car 

was presented followed by the name “bicycle”).  
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Figure 9. Samples of the event sequence used for the same and different trials in Experiment 1. 
In the “same” trials of Experiment 1, a face, animal or object was presented at one of six degrees 
of planar rotation (0, 60, 120, 180, 240, or 300), followed by the name of the presented stimulus.  
In the example above, Beyonce’s face is presented at 180° planar rotation followed by her name.  
In the “different” trials of experiment 1, a face, animal, or object was presented at one of six 
degrees of planar rotation (0, 60, 120, 180, 240, 300), followed by a name that did not match the 
presented stimulus.  In example above, a camera is presented at 60° planar rotation, followed by 
the name, “calculator”. 

Each participant saw 216 experimental trials.  For each participant, all 72 

faces, all 72 animals, and all 72 objects were presented one time during the 

experiment.  Each participant saw six faces, six animals, and six objects for the 

same trials at each of the six degrees of planar rotation (0, 60, 120, 180, 240, 

and 300). The stimuli that were presented for any given trial type (degree of 

rotation (0, 60, 120, 180, 240, 300) X trial type (same or different)) were 

counterbalanced across every 12 participants.  All of the stimuli were 

counterbalanced across the same and different trials.  Furthermore, the different 

trials were counterbalanced across degrees of planar rotation.  So, for any one 
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object in the experiment, for half the subjects it was a same trial and for half it 

was a different trial.  Each stimulus occurred equally often across each trial 

conditions.  The order of the trials was randomly chosen for each participant.  

Face, animal, and object trials were randomly presented in a single block.   

Participants were presented with practice trials prior to the experiment 

using the same presentation sequence that was used during the actual 

experiment.  The practice trials consisted of 18 total trials (six faces, six animals, 

and six objects).  Each participant saw a practice trial at each degree of planar 

rotation for each stimulus type (faces, animals, and objects).  Half of the practice 

trials were same trials and half were different trials.   

Results 

Error rates and reaction times for the same trials in Experiment 1 were 

examined using a factorial within-participants analysis of variance (ANOVA) with 

stimulus type (face, animal, and object) and degrees of planar rotation (0, 60, 

120,180, 240, and 300) for the same trials as the independent variables.  Any 

subject that did not perform above 70% accuracy for any of the three stimulus 

types (i.e., animal, face, and objects) was excluded from the analysis in order to 

eliminate participants who were unfamiliar with the names of the stimuli that were 

presented.  As a result, eighteen subjects were removed and replaced with 

additional participants.  All statistical hypotheses in the current studies were 

tested with a two-tailed alpha level of .05.  The different trials in Experiment 1 

were not relevant to the research question, and analysis of the different trials did 

not display a speed-accuracy trade-off. 
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Reaction Time Data 

There was a reliable interaction between degrees of planar rotation and 

stimulus type F (10, 1430) = 6.48, p < .01.  Whereas faces displayed an inverted-

U-shaped rotation function for reaction time, animals and objects displayed flat 

rotation functions (see Figure 10).  A post hoc pairwise comparison of reaction 

time across degrees of rotation for each stimulus type, using the Bonferroni 

adjustment, was performed.  Participants were slower at responding to 120°, 

180°, and 240° rotated faces than to 0°, 60°, and 300° rotated faces.  There were 

no reliable differences in reaction time across degrees of rotation for objects or 

animals.  There was a reliable main effect of stimulus type F (2, 286) = 63.16, p < 

.01.  Overall, participants responded faster to objects than to animals or faces, 

and faster to animals than to faces.  There was a reliable main effect of degrees 

of rotation F (5, 715) = 7.55, p < .01.   
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Figure 10. The graph displays the mean reaction times across each degree of rotation for each 
stimulus type for same trials.  Standard error bars are shown for each degree of planar rotation X 
stimulus type.  

Error Rate Data 

There was a reliable interaction between degrees of planar rotation and 

stimulus type F (10, 1430) = 9.29, p < .01.  Whereas faces displayed an inverted-

U-shaped rotation function for error rates, animals and objects showed a flat 

function (see Figure 11).  A post hoc pairwise comparison of percentage error 

across degrees of rotation for each stimulus type, using the Bonferroni 

adjustment, was performed.  Participants made more errors to 120°, 180°, and 

240° rotated faces than to 0°, 60°, and 300° rotated faces.  There were no 

reliable differences in error percentage across degrees of rotation for objects or 
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animals.    There was a reliable main effect of stimulus type F (2, 286) = 50.35, p 

< .01.  Overall, participants made fewer errors to objects, followed by animals, 

and they made the most errors responding to faces.  There was a reliable main 

effect of degrees of rotation F (5, 715) = 9.27, p < .01.   

 
Figure 11. The graph displays percentage errors across each degree of rotation for each stimulus 
type for same trials.  Standard error bars are shown for each degree of planar rotation X stimulus 
type.  

 
Function Fitting 

For each stimuli type (face, animal, and object), the mean RTs for the 

different rotations used in Experiment 1 were correlated with the best fitting linear 

model of the data and the best fitting model of the form 𝑐 2− 2 cos 𝜃 + 𝑏 (i.e., 
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the Euclidean distance), where c and b are constants and θ is the angle of 

rotation.  For the mean reaction times for the six different rotation conditions for 

objects used in Experiment 1, the best linear fit produced a smaller correlation, r 

= .38 (accounting for 14.4% of the variance), than the best Euclidean fit, r = .50 

(accounting for 25.4% of the variance).  For animals, the best linear fit produced 

a smaller correlation, r = .41 (accounting for 17.1% of the variance), than the best 

Euclidean fit, r = .57 (accounting for 32.5% of the variance).  For faces, the best 

linear fit produced a slightly larger correlation, r = .99 (accounting for 97.2% of 

the variance), than the best Euclidean fit, r = .96 (accounting for 91.3% of the 

variance).  Taking into account the best fitting functions of each stimulus class, it 

does not appear that a mental rotation model of planar rotation (i.e., the best 

linear fit) does a better job at predicting the effects of planar rotation than a 

Euclidean distance model of mental rotation. 

Discussion 

 The results of Experiment 1 failed to support the predictions of the 

coordinate relations hypothesis (Cooper & Wojan, 2000).  Although the faces 

displayed an inverted-U shaped function for both reaction times and error rates, 

the rotation function for both dependent variables for the animals was flat.  The 

rotation functions for animals and objects observed in Experiment 1 did not 

replicate the inverted-U shaped function for animals and the M-shaped function 

for objects produced by Cooper and Brooks (2004).  The interaction in the 

rotation function for both reaction time and error rates between faces and 

animals suggests that there is something qualitatively different about the 
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recognition of faces, compared to animals, when they are rotated in the picture 

plane. 

 Experiment 1 had considerable variance in the data for many subjects.  

Specifically, there were only six data points for any given stimulus type x rotation 

condition.  As a result, the data are likely to be noisy.  Also, whereas Cooper and 

Brooks (2004) had participants verbally name the stimulus that was presented, 

Experiment 1 required participants to indicate whether the name of a stimulus 

matched the previously presented image.   As a result, Experiment 1 added a 

word recognition component that may have further increased the noise in the 

data.  However, it is clear from the results of Experiment 1 that the rotation 

function for identifying faces is considerably steeper than that for recognizing 

animals (thus falsifying Cooper & Wojan’s (2000) explanation of the face 

inversion effect). 

 Experiment 1 failed to replicate the M-shaped function for the recognition 

of objects at the basic-level that has been observed by many studies (e.g., 

Cooper & Brooks, 2004; Jolicoeur, 1985; Jolicoeur, 1988; Jolicoeur & Milliken, 

1989; McMullen & Farah, 1991; McMullen & Jolicoeur, 1990).  It is possible that 

presentation sequence for Experiment 1 produced a floor effect for the objects 

that prevented the production of the M-shaped rotation function.  Specifically, 

participants were shown the stimuli for 250 ms before the names of the stimuli 

was displayed and they could respond.  It is possible that participants were able 

to recognize objects before the name of the object was presented, consequently 

producing a floor effect in reaction time and a flat rotation function.  In order to 
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determine if the absence of a M-shaped rotation function was a result of having 

participants wait 250 ms until they could respond to the image presented, 

Experiment 2 allowed participants to respond immediately upon presentation of a 

stimulus.  If the failure to replicate the rotation functions Cooper and Brooks 

(2004) found for animals and objects was due to a floor effect in Experiment 1, 

then Experiment 2 should display the M-shaped rotation function that was absent 

in Experiment 1.   

Experiment 2 

 Experiment 2 attempted to replicate the rotation functions observed for 

animals and objects by Cooper and Brooks (2004) using a slightly different 

experimental task.  Experiment 2 required participants to categorize visually 

presented stimuli rather than to determine whether a name matched a visually 

presented stimulus.  The purpose of Experiment 2 is two-fold.  First, Experiment 

2 tested the generalizability of the results obtained by Cooper and Brooks (and 

Experiment 1).  Second, Experiment 2 attempted to reduce potential within-

subjects variance that is prevalent across trials when using proper name 

recognition as a dependent variable (for review, see Cohen & Burke, 1993).  

Previous researchers have found that participants are faster at categorizing 

visual stimuli than naming them (Johnson & Bruce, 1990; Potter & Faulconer, 

1975; Young et al., 1986).  Third, Experiment 2 tested whether the failure to find 

the M-shaped rotation function for objects in Experiment 1 was because 

participants recognized the objects before they could respond.  Finally, all stimuli 

in Experiment 2 were grayscaled to prevent participants to recognize objects 
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based on its common color (e.g., a yellow school bus).   

 The rationale of Experiment 2 was to replicate the inverted-U shaped 

rotation function observed for animals and the m-shaped rotation function 

observed for objects by Cooper and Brooks (2004) in order to determine whether 

the rotation function for faces is qualitatively different from the rotation function 

for animals and objects.  The changes adopted for Experiment 2 were performed 

in order to obtain cleaner rotation functions for the recognition of faces, animals, 

and objects.  

Method 

 Unless noted, all procedures in Experiment 2 were the same as those in 

Experiment 1. 

Participants  

 Ninety-eight undergraduate students from the Iowa State University 

subjects’ pool participated in the experiment for course credit.  All subjects 

reported normal or corrected-to-normal vision.  The participants consisted of 51 

females and 47 males.  The mean age of the participants was 19.9 (SD=2.6). 

Apparatus 

Stimuli for the experiment consisted of grayscale photographs of 30 faces, 

30 animals and 30 objects originally taken from their upright canonical view. All 

pictures were prepared in the same way as Experiment 1. 

Faces.  All the faces chosen in Experiment 2 consisted of famous people.  

Half of all the famous faces were actors and half of the famous faces were non-

actors.  Actors consisted of individuals who are primarily known for their roles in 
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movies and television shows.  Non-actors consisted of individuals whose fame 

was achieved from anything other than movies and television shows (e.g., 

politicians, athletes, musicians, and television broadcasters).  Half of the faces 

were female and the remaining faces were male.  Gender was balanced across 

stimulus types (actor and non-actors).  The famous faces used in this experiment 

were chosen after a pilot study was conducted to determine which famous 

individuals were most familiar to undergraduate students (see Appendix D for 

list).   

Animals.  The animals chosen for Experiment 2 consisted of animals that 

share similar structural descriptions with another animal from a different basic-

level category (e.g., donkey and horse each share similar structural descriptions; 

see Appendix E for list).  Like Experiment 1, this criterion for animals eliminated 

certain types of animals from Experiment 2.  In order for an animal to be included 

in Experiment 2, the animal had to have a common upright orientation.  Half of 

the animals used as stimuli in Experiment 2 are typically found in North America 

and half of the animals are typically found somewhere other than North America.   

Objects.  The objects chosen for Experiment 2 consisted of basic-level 

objects that have a unique structural description (see Appendix F for list).  In 

order for an object to be included in the Experiment 2 the object needed to have 

a common upright orientation.  Half of the objects consisted of objects that are 

typically used inside a residence (e.g., blender) and half of the objects consisted 

of objects that are typically used outside a residence (e.g., helmet). 
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Procedure 

Presentation of the stimuli was self-paced.  Participants were positioned 

so that they were approximately 42 cm away from the display.  Participants 

pressed the spacebar to begin each trial.  After the spacebar was pressed, a 

fixation cue was presented for 250 ms, followed by one of the stimuli until the 

participant’s response.  Accuracy feedback was given to the participants 

following each trial.  The face, animal, and object stimuli were blocked and 

counterbalanced across participants.  

Face block.  Participants were instructed to press the “m” key if the face 

that was presented was of a non-actor and to press the “n” key if the face that 

was presented was of an actor.  Participants were instructed that they should 

classify a face as an actor if the individual that was presented was primarily 

known for their roles in movies or television shows and to classify a face as a 

non-actor if the individual that was presented became famous as a result of 

something other than movies or television shows (e.g., musicians, athletes, 

politicians, and television broadcasters).   

Animal block.  Participants were instructed to press the “m” key if the 

animal presented is not found in North America and to press the “n” key if the 

animal is found in North America.  Participants were told that animals that can 

only be found in zoos or exotic farms should not be classified as North American.  

Object block.  Participants were instructed to press the “m” key if the 

object presented was used outside the house and to press the “n” key if the 

object presented was used inside the house.  Participants were instructed that 
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objects commonly used inside a residence (i.e., house, apartment, or townhome) 

should be classified as inside, and that objects commonly used, or seen, outside 

a residence should be classified as outside.  Participants were instructed to press 

the “m” key if the object is used outside the house and to press the “n” key if the 

object is used inside the house. 

The categorization tasks were blocked and counterbalanced across every 

six participants.  The key press was not counterbalanced across participants 

because the responses for each categorization task (actor/non-actor, North 

American/not North American, and outside/elsewhere) were averaged together 

(e.g., “actor” and “non-actor” error rates and correct response times were 

averaged together). 

Each participant saw 180 face, 180 animal, and 180 object experimental 

trials (540 total trials).  For each participant, all 30 faces, all 30 animals, and all 

30 objects were presented one time during the experiment at all six degrees of 

planar rotation (0, 60, 120, 180, 240, and 300).  The rationale for repeating 

images across degrees of rotation was to increase each participant’s number of 

data points for each degree of rotation in order to reduce random variance.  

Additionally, whereas Experiment 1 only had 6 “same” trials for each degree of 

rotation, Experiment 2 had 30 trials of interest for each degree of rotation which 

allowed for enough responses to remove any response times that fall three 

standard deviations away from each participant’s stimulus type X degree of 

rotation mean.   The order of the trials was randomly chosen for each participant.   

Participants were presented with practice trials prior to each block of the 
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experiment using the same presentation conditions used during the actual 

experiment (but with different stimuli).  The practice trials consisted of twelve total 

trials for each block with two stimuli presented at each of the six planar rotations.  

Results 

 The error rates and reaction times from Experiment 2 were analyzed using a 

factorial within-participants analysis of variance (ANOVA) with stimulus type 

(face, animal, and object), and degrees of planar rotation (0, 60, 120,180, 240, 

and 300) as the independent variables. Any subject who did not perform above 

70% accuracy for any of the three recognition tasks (i.e., actor/non-actor, North 

American/elsewhere, and inside/outside) was excluded from the analysis in order 

to eliminate participants who were unfamiliar with the famous faces, animals, 

and/or objects that were presented.  Thirteen participants were not included in 

any of the data analysis because they did not perform above 70% accuracy in all 

three recognition tasks.  The greater number of trials in Experiment 2 allowed 

outliers to be eliminated in the data from of Experiment 2.  All reaction times that 

fell outside of three standard deviations from each participant’s stimulus type X 

degree of rotation mean were removed (fewer than 3% of the data points were 

removed). 

Reaction Time Data 

There was a reliable interaction between degrees of planar rotation and 

stimulus type F (10, 970) = 2.02, p < .05.  Specifically, faces displayed a steeper 

inverted-U-shaped rotation function than animals in reaction time and object 

reaction times showed a flat rotation function (see Figure 12).  A post hoc 
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pairwise comparison of reaction time across degrees of rotation for each stimulus 

type, using the Bonferroni adjustment, was performed.  Participants were slower 

at responding to 120°, 180°, and 240° rotated faces than to 0°, 60°, and 300° 

rotated faces.  Participants were slower at responding to 180° and 240° rotated 

faces and were slower at responding to 180° rotated faces than to 60° rotated 

faces.  Further, participants were slower at responding to 180° rotated animals 

than to 0° rotated animals.  There were no reliable differences in reaction time 

across degrees of rotation for objects.  There was a reliable main effect of 

stimulus type F (2, 194) = 331.53, p < .01.  Overall, participants responded faster 

to objects than to animals or faces, and slower to animals than to faces.  There 

was a reliable main effect of degrees of rotation F (5, 485) = 12.89, p < .01.   
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Figure 12. The graph displays the mean reaction times across each degree of rotation for each 
stimulus type.  Standard error bars are shown for each degree of planar rotation X stimulus type.  

Error Rate Data 

There was a reliable interaction between degrees of planar rotation and 

stimulus type F (10, 970) = 6.84, p < .01.  Specifically, faces displayed a steeper 

inverted-U-shaped rotation function than animals for error rates and objects 

showed a flat rotation function (see Figure 13).  A post hoc pairwise comparison 

of reaction time across degrees of rotation for each stimulus type, using the 

Bonferroni adjustment, was performed.  Participants made more errors at 

responding to 120°, 180°, and 240° rotated faces than to 0°, 60°, and 300° 

rotated faces.  Additionally, participants made reliably more errors when 

responding to 300° animals than to 0°, 60°, and 240° animals; there is no 
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research that would predict such difference and it is likely that the greater error 

rates at 300° for animals is noise and reflects a Type I error.  There were no 

reliable differences in error rates across degrees of rotation for objects.  There 

was a reliable main effect of stimulus type F (2, 194) = 176.06, p < .01.  Overall, 

participants made more errors to faces, followed by animals, and participants 

made the fewest errors to objects.  There was a reliable main effect of degrees of 

rotation F (5, 485) = 8.94, p < .01.   

 

 

 
Figure 13. The graph displays the mean error rates across each degree of rotation for each 
stimulus type.  Standard error bars are shown for each degree of planar rotation X stimulus type.  
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Function fitting 

As in Experiment 1, for each stimulus type, the mean RTs for the different 

rotations used in Experiment 2 were correlated with the best fitting linear model 

of the data and the best fitting model of the form 𝑐 2− 2 cos 𝜃 + 𝑏 in order to 

determine if the linear model or the Euclidean distance model provided a better 

description of the data. As in Experiment 1, for each stimulus type, the mean RTs 

for the different rotations used in Experiment 2 were correlated with the best 

fitting linear model of the data and the best fitting model of the form 

𝑐 2− 2 cos 𝜃 + 𝑏 in order to determine if the linear model or the Euclidean 

distance model provided a better description of the data. For the objects, the best 

linear fit produced a similar correlation, r = .89 (accounting for 78.2% of the 

variance), to the best Euclidean fit, r = .89 (accounting for 79.7% of the variance).  

For the animals, the best linear fit produced a similar correlation, r = .92 

(accounting for 84.2% of the variance), to the best Euclidean fit, r = .92 

(accounting for 84.6% of the variance).  For the faces, the best linear fit produced 

a smaller correlation, r = .92 (accounting for 85.0% of the variance), than the best 

Euclidean fit, r = .93 (accounting for 87.0% of the variance).  The fits for the linear 

and Euclidean distance models appear to be so similar, that the data from 

Experiment 2 cannot be used to decide which is a better fit. 

Discussion 

 As in Experiment 1, Experiment 2 failed to support Cooper and Wojan’s 

(2000) explanation for the face inversion effect.  Cooper and Wojan’s (2000) 

explanation for the effect predicts parallel rotation functions for animals and 
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faces, and both Experiment 1 and Experiment 2 found much steeper rotation 

functions for faces than for animals (see Figure 15). Consequently, the 

recognition of faces appears to be qualitatively different from the recognition of 

animals and objects. 

 Whereas Experiment 1 failed to find the inverted U shaped rotation 

function for animals observed by Cooper and Brooks (2004), Experiment 2 

showed such a function.  The increased number of data points, for any given 

stimulus type x degrees of rotation condition likely reduced the noise that was 

present in Experiment 1 and allowed for the observation of an inverted U shaped 

function for recognizing rotated animals.  Nevertheless, the rotation function was 

steeper for faces than for animals.   

 One of the justifications for running Experiment 2 was that it was more 

likely than Experiment 1 to replicate the M shaped rotation function for objects 

that has been consistently shown in previous research (e.g., Cooper & Brooks, 

2004; Jolicoeur, 1985; Jolicoeur, 1988; Jolicoeur & Milliken, 1989; McMullen & 

Farah, 1991; McMullen & Jolicoeur, 1990).  Like Experiment 1, Experiment 2 did 

not display an M-shaped rotation function for objects.  The failure to replicate the 

M-shaped rotation function could be due to the nature of the task used in 

Experiment 2.  Whereas Cooper and Brooks found an M-shaped rotation function 

using an object naming task, Experiment 2 only required participants to classify 

objects into one of two categories.  Although the coordinate relations predicted 

an M-shaped function in Experiments 1 and 2, it is possible that the difference in 

the nature of the tasks used in the present study were responsible for the lack of 
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a rotation function.   

 As noted in the Introduction, humans tend to have greater experience 

recognizing faces than other objects that share similar structural descriptions.  

The steeper inverted-U shaped rotation function for faces than for animals may 

reflect greater expertise with faces than animals.  Suppose that recognizing a 

face requires finer tuning of the co-ordinate representation than recognizing an 

animal (i.e. the distances of the primitives from the reference point must be 

calculated more precisely to distinguish two different faces than to distinguish two 

different animals).   If distinguishing faces requires a more precise coding of 

distance than distinguishing animals, then disrupting the distances by rotating the 

stimuli would be more disruptive to face recognition than to animal recognition.  

Finally, it is possible that the differences in rotation functions between faces and 

animals reflect the degree to which the face stimuli and the animal stimuli used in 

the experiment shared structural descriptions.  Although participants could not 

rely on the structural description of an animal to determine whether an animal 

was North American or not, there was more overall interstimulus perceptual 

variance (Thierry et al., 2007) among the animals used in the experiment than 

among the faces.  Nevertheless, Experiments 1 and 2 both suggest that there is 

something qualitatively different about the recognition of faces than animals or 

objects.    

Experiment 3 

 Experiment 3 tested whether a holistic representation (as defined by 

Tanaka & Farah, 1993) or a coordinate representation (Cooper & Wojan, 2000) 
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of a face better predicts the effects of inversion when one manipulates the 

number of features of a face that a participant has to discriminate.   As discussed 

in the Introduction, Tanaka and Farah (1993) defined holistic representations as 

“representations without an internal part structure,” and posited that the face 

inversion effect occurs because the holistic representation can only be activated 

when the face is right side up.  Tanaka and Farah posited that holistic 

representations code the entire face without any decomposition of the parts of 

the face.  Based on this logic, Tanaka and Farah would predict that a face 

inversion effect would not occur when participants discriminate features of face 

outside the context of a whole face.  In contrast, the coordinate relations 

hypothesis posits that that there should be an inversion effect for parts of a face 

outside the context of a whole face because inversion will disrupt the coordinate 

representation of those face parts (Brooks & Cooper, 2006; Cooper & Brooks, 

2004). 

Experiment 3 investigated the inversion effects for two-feature (eyes), 

three-feature (eyes and mouth), four-feature (eyes, mouth, and nose), six-feature 

(eyes, mouth, nose, and eyebrows), whole-face, and six-features in the context 

of a non-face object (in the current experiment, a bucket (e.g., eyes, mouth, 

nose, and eyebrows in the context of a bucket)).  The bucket condition was 

added to the face manipulation conditions to determine whether adding more 

information that is visually similar (e.g., creating a more similar coordinate 

representation) would produce a larger inversion effect than the other feature 

manipulation conditions.  If a coordinate representation explains the face 
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inversion effect, then the face inversion effect should progressively increase as 

the number of features whose coordinates need to be coded increases (see 

Figure 14 for hypothetical results).   

 
Figure 14.  Tanaka and Farah’s (1993) holistic representation hypothesis does not predict a 
significant face inversion effect until a whole face is presented (Panel A).  In contrast, the 
coordinate representation hypothesis predicts that the size of the face inversion effect will 
increase as the number of features to be coded by a coordinate representation increases (Panel 
B). 
 

The reason why the coordinate relations hypothesis predicts increasing 

face inversion effects as the number of features to be coded increases can be 

explained by the response properties of the neurons in area TE of the cortex that 

are selective for faces.  As mentioned in the Introduction, a small percentage of 

the cells in TE respond equally vigorously to a particular face regardless of the 

perspective at which the face is viewed (the viewpoint invariant cells).  However, 

the majority of cells in TE that are selective for faces appear to change their firing 

pattern based on the perspective at which the face is seen (the viewpoint specific 

cells; Gross, 1992; Rolls, 2000; Rolls, 2007)).   Both Rolls (2000; 2007) and 

Perrett et al. (1998) posited that the neural representation used to recognize 
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faces incorporates both types of cells: viewpoint invariant and viewpoint specific.   

  Perrett et al. (1998) found that as the number of viewpoint specific 

neurons required to perform a task increases, the more disruptive changing the 

orientation of the stimulus will be on recognition (i.e, it will take longer for the 

neural representation of the object to reach the recognition threshold).  

Therefore, as the number of features in Experiment 3 is increased, the 

coordinate relations hypothesis predicts that the amount of noise caused by 

inversion will increase as well.  Thus, the more features that are in the stimulus, 

the greater the face inversion effect should be. 

In contrast, if a holistic representation that is not activated except in the 

context of a whole face explains the face inversion effect (as proposed by 

Tanaka & Farah, 1993), then the effect should be dramatically larger if the 

features are presented in the context of a face than if they are not, and there 

should be no change in the face inversion effect as the number of features to be 

coded increases.   

Method 

 Unless noted, all procedures in Experiment 3 are the same as in 

Experiment 2. 

Participants  

 One-hundred-and-nine undergraduate students at Iowa State University 

from the subjects’ pool participated in the experiment for course credit.  All 

subjects reported normal or corrected-to-normal vision.  The participants 

consisted of 74 females and 35 males.  The mean age of the participants was 
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19.7 (SD=2.6). 

Apparatus 

 Stimuli for the experiment consisted of 72 grayscale photographs of 

famous faces.  All the faces were taken from their canonical upright view.  Half of 

the famous faces were male and half of the famous faces were female.  Five 

other face manipulations were constructed for each famous face using 

Photoshop CS5.1.  The additional face manipulations produced stimuli that 

consisted of two-features (eyes only), three-features (eyes and mouth), four-

features (eyes, mouth, and nose), six-features (eyes, mouth, nose, and 

eyebrows), and six-features in the context of a non-face stimulus (eyes, mouth, 

nose, eyebrows, presented on a bucket; see Figure 15 for sample stimuli). The 

distance of the features between one another were held constant across all of 

the stimulus types.  Inverted copies of all the face stimuli were also made.  
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Figure 15.  All of the face stimuli created for “Ben Affleck”.  The same face stimuli were created 
for each of the 72 faces.  
 
 
 
Procedure 

Participants were instructed to press the spacebar to begin each trial. 

Upon pressing the spacebar, a fixation cue was presented for 500 ms, followed 

by the presentation of a face stimulus for 250 ms (e.g., a two feature Bill Clinton), 

followed by a pattern mask for 500 ms, followed by the presentation of a second 

face stimulus that remained on the screen until the participant’s response (see 

Figure 16).  Participants were instructed to press the “m” key if the two face 

stimuli that were presented were identical and to press the “n” key if the two face 

stimuli that were presented were different.  The second face was randomly 

presented at one of four possible locations on any trial (either 1.5° of visual angle 

above and 1.5° of visual angle to the right, 1.5° of visual angle above and 1.5° of 
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visual angle to the left, 1.5° of visual angle below and 1.5° of visual angle to the 

right, or 1.5° of visual angle below and 1.5° of visual angle to the left of the 

fixation point) and all four locations were presented equally often. Displacing the 

presentation of the second face from the first face eliminated participants from 

simply using changes in the retinal image upon presentation of the second face 

as an indicator of whether or not the two faces were identical.  In half of the trials 

the two faces were identical. For the trials in which the two stimuli were different, 

the two stimuli were matched for gender and ethnicity (e.g., a three-feature Bill 

Clinton was compared to a three-feature Michael Douglas).   

 
Figure 16. Event sequences for the identical and different trials used in Experiment 3.  The face 
stimuli presented for any given trial can be upright or inverted and consist of two-feature, three-
feature, four-feature, six-feature, six-features in the context of a bucket, or whole faces.  
 

 Each participant saw a third of the face stimuli in order to avoid fatigue 
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effects. The experimenters initially ran themselves on all of the stimuli (1728 

trials) and reported that the experiment was too long and tiring.  Each face 

stimulus was randomly assigned to one of three blocks and the number of trials 

for each condition was the same (24 trials for each condition).  Each participant 

saw 576 experimental trials.  Participants were presented with each of the face 

manipulations (whole, two-feature, three-feature, four-feature, six-feature, and 

six-features in the context of a bucket) for 1/3 (24) of the famous faces at both 

orientations (upright or inverted) and for both trial types (identical or different). All 

the famous face stimuli were used across every three participants.  The order of 

the trials was randomly chosen for each participant.  For any given trial the first 

face and second face presented were matched for orientation (e.g., upright then 

upright) and number of features (e.g., whole faces were always compared to 

whole faces, and two-feature faces were always followed by two-feature faces).   

Participants were presented with 72 practice trials prior to the experiment 

using the same presentation conditions used during the actual experiment.  Each 

participant saw three practice trials for any given face manipulation x orientation 

x trial type condition.  

Results 

Error rates and reaction times and were examined for Experiment 3 using 

a one-way within-participants analysis of variance (ANOVA) with face 

manipulation (whole, two, three, four, five, and six feature faces in the context of 

a bucket) as the independent variable. Nineteen participants were not included in 

any of the data analysis because they did not perform above 70% accuracy in all 
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six face manipulation conditions.  As in Experiment 2, Experiment 3 had many 

data points for each condition of interest (24 for Experiment 3).  As a result, all 

reaction times that fell outside of three standard deviations from each 

participant’s orientation X manipulation condition mean were removed (fewer 

than 3% of the data points were removed). 

Face Inversion Effect 

A new dependent variable was created for each participant that measured 

each participant’s face inversion effect for each of the face manipulation 

conditions (i.e., whole face, two-feature, three-feature, four-feature, five-feature, 

or five-features in the context of a bucket).  The face inversion effect was 

measured by subtracting the upright dependent variables (reaction time and error 

rate) from the inverted dependent variables for each face manipulation condition.  

See Appendix G for original upright and inverted mean reaction times and 

Appendix H for original upright and inverted mean percentage error rates.  For 

example, if a participant in the “identical” three-feature face condition made 30% 

errors for inverted three-feature faces and 14% errors for upright three-feature 

faces, that participants face inversion effect for three-feature identical trials would 

be 16% errors.  The same logic was applied to the reaction time data so that 

larger scores were associated with a larger face inversion effect. 

Reaction time and error rates for the face inversion effect were examined 

for Experiment 3 using a within-participants one-way analysis of variance 

(ANOVA) with face manipulation as the independent variable.  There was a 

reliable main effect of face manipulation on reaction time F (5, 540) = 3.74, p < 
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.01.  Figure 17 presents the face inversion effect for reaction time for each face 

manipulation condition.  A post hoc pairwise comparison of reaction time across 

face manipulation conditions was performed using the Bonferroni adjustment.  

With the exception of the two eyes condition, all face manipulation conditions 

displayed a reliable face inversion effect for reaction time.   

 
Figure 17. The graph displays the mean reaction time face inversion effect for each of the feature 
manipulation conditions.  Standard error bars are shown for each feature manipulation condition. 
Note.  Two = eyes; Three = eyes & mouth; Four = eyes, mouth, & nose; Six = eyes, mouth, nose 
& eyebrows; Whole = whole face; Bucket =eyes, mouth, nose, & eyebrows on bucket. 
   

There was a reliable main effect of face manipulation on error rates F (5, 

540) = 26.64, p < .01.  Figure 18 presents the face inversion effect for error rates 

for each face manipulation condition.  With the exception of the two eyes 
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condition, all face manipulation conditions displayed a reliable face inversion 

effect for error rates. A post hoc pairwise comparison of error rates across face 

manipulation conditions was performed using the Bonferroni adjustment.  The 

whole face condition displayed a smaller face inversion effect than all the other 

face manipulation conditions that displayed a face inversion effect.  The three-

feature (eyes & mouth), four-feature (eyes, mouth, & nose), and six-feature 

(eyes, mouth, nose, and eyebrows) conditions displayed a smaller face inversion 

effect than the six-features in the context of a bucket condition.  The six features 

in the context of a bucket displayed a greater face inversion effect for error rates 

than the whole face condition.  
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Figure 18. The graph displays the mean error rate face inversion effect for each of the feature 
manipulation conditions.  Standard error bars are shown for each feature manipulation condition. 
Note.  Two = eyes; Three = eyes & mouth; Four = eyes, mouth, & nose; Six = eyes, mouth, nose 
& eyebrows; Whole = whole face; Bucket =eyes, mouth, nose, & eyebrows on bucket. 

Reaction Time and Error Rate Data 

A subsequent within subjects’ factorial ANOVA was performed on the 

reaction time and error rate data from Experiment 3 with face manipulation 

(whole, two, three, four, five, and six feature faces in the context of a bucket) and 

stimuli orientation (upright vs. inverted) as the independent variables.    In other 

words, the data were also analyzed without creating a new dependent variable 

for the inversion effects. The reason this subsequent analysis was carried out 

was to determine whether the differences in the inversion effects for the face 
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manipulations conditions in Experiment 3 may have been due to floor and ceiling 

effects. 

 Reaction time data.  There was a reliable interaction between orientation 

and face manipulation, F (5, 540) = 3.53, p < .01 (see Figure 19). There was a 

reliable main effect of face manipulation F (5, 540) = 59.1, p < .01.  A post hoc 

pairwise comparison of reaction time was performed for each face manipulation 

condition using the Bonferroni adjustment.  Overall, participants responded the 

fastest to whole faces and they responded the slowest to six-features in the 

context of a non-face stimulus (the bucketheads).  Further, participants 

responded slower to the two eyes condition than to the two eyes and a mouth 

condition.  No other pairwise comparisons were reliably different.   As predicted, 

there was a reliable main effect of orientation F (1, 97) = 74.26, p < .01.  

Participants took longer to respond to inverted faces than to upright faces.    
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Figure 19.  As the number of features of a face increased from two features to three, four, and six 
features, the difference in reaction time between upright and inverted increased.  Note.  Two = 
eyes; Three = eyes & mouth; Four = eyes, mouth, & nose; Six = eyes, mouth, nose & eyebrows; 
Whole = whole face; Bucket =eyes, mouth, nose, & eyebrows on bucket. 

Error rate data.  There was a reliable interaction between orientation and 

face manipulation F (5, 540) = 26.64, p < .01 (see Figure 20). There was a 

reliable main effect of face manipulation F (5, 540) = 54.14, p < .01.  A post hoc 

pairwise comparison of error rates was performed for each face manipulation 

condition using the Bonferroni adjustment.  Overall, participants made the fewest 

errors to whole faces and they made the most errors to six-features in the context 

of a non-face stimulus (the bucketheads) and the two eyes conditions.  No other 

pairwise comparisons were reliably different.   As predicted, there was a reliable 
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main effect of orientation F (1, 97) = 152.76, p < .01.  Participants made more 

errors when responding to inverted faces than to upright faces.  Overall, the 

differences in face inversion effects does not appear to be a result of floor or 

ceiling effects.  

 

 
Figure 20.  As the number of features of a face increased from two features to three, four, and six 
features, the difference in error rates between upright and inverted increased.  Note.  Two = eyes; 
Three = eyes & mouth; Four = eyes, mouth, & nose; Six = eyes, mouth, nose & eyebrows; Whole 
= whole face; Bucket =eyes, mouth, nose, & eyebrows on bucket. 

Different Trials Reaction Time and Error Rate Data 

The different trials in Experiment 3 were not of interest to this study’s 

research question, but reaction time data and error rate data was examined to 

ensure that there was not a speed-accuracy tradeoff.  Table 1 shows that the 
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different trials in the experiment did not display a speed-accuracy trade off.  

Table 1 
Mean Face Inversion Effects for Reaction and Pct. Error Rate for                  
the Different Trials 
  Reaction Time  Error Rates 

Image Type    M SD      M     SD 

Two   23.63 165.23  3.2     9.44   

Three   54.12 153.38  4.6    10.86   

Four    61.11 114.52  7.4    10.99   

Six 

Bucket 

  53.17 110.04  6.0    11.13   

46.68 141.29 4.0    11.07 

Whole   51.23 151.41  2.1     5.95  

 
Note.  Two = eyes; Three = eyes & mouth; Four = eyes, mouth, & nose; Six = eyes, mouth, nose 
& eyebrows; Whole = whole face; Bucket =eyes, mouth, nose, & eyebrows on bucket. 
 

Discussion 

 Experiment 3 failed to support Tanaka and Farah’s (1993) hypothesis that 

the face inversion effect is caused by a disruption in a holistic representation.  

Specifically, apart from the two eyes condition, a face inversion effect was 

observed for all of the feature manipulation conditions for both reaction time and 

error rates.  In fact, apart from the two eyes condition, the reduced feature face 

manipulation conditions produced a larger face inversion effect for error rates 

than the whole face condition.  It is possible that Tanaka and Farah’s definition of 

a whole face does not require every part of the face in order to be activated (e.g., 

holistic processing begins when three features of a face are presented), 
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nevertheless, their definition of a holistic representation of a face cannot explain 

the differences in the magnitude of the inversion effects across the feature 

manipulation conditions.  Specifically, a holistic representation of a face cannot 

explain why the inversion effects for whole faces, six-features in the context of a 

bucket, and three of the face manipulation conditions (i.e., the three-feature, four-

feature, and six-feature conditions) all displayed different sized inversion effects.  

In contrast, a coordinate representation of a face can explain the different face 

inversion effects across face-manipulation conditions.   Consequently, Tanaka 

and Farah’s holistic representation is incapable of accounting for the face 

inversion effects shown in Experiment 3. 

The results of Experiment 3 partially support the predictions made by the 

coordinate relations hypothesis, based on the single unit recording literature 

(e.g., Gross, 1992; Perret et al., 1998; Rolls, 2000; 2007), that the face inversion 

effect would grow larger as the number of features to be coded by a coordinate 

representation increased.  Specifically, the 3-feature, 4-feature, and six-feature 

conditions produced a greater face inversion effect than the two-feature 

condition.  Further, the six features in the context of a bucket produced a greater 

face inversion effect than all the other conditions.  

Although Experiment 3 failed to support Tanaka and Farah’s (1993) 

hypothesis that the face inversion effect is caused by a disruption in a holistic 

representation, the face inversion effect did not produce progressively larger 

inversion effect every time the number of features of a face increased as was 

predicted by the coordinate relations hypothesis (i.e., there was no reliable 
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difference between three-feature, four-feature, and six-feature faces).  Research 

suggests that some features play a larger role in face recognition than others 

(Brooks & Kemp, 2007; Sadr, Jarudi, & Sinha, 2003; Sekuler, A. B., Gaspar, C. 

M., Gold, J. M., & Bennett, P. J., 2004).  Given that some features are more 

important to face recognition than others, one would not expect the increment in 

the face inversion effect to increase by a fixed amount as each new feature is 

added.  Thus, failure to find an increasing face inversion effect may be the result 

of the experiment lacking the power to find small differences when a relatively 

unimportant feature is added to the stimulus.   

It is important to note that the face inversion effect was smaller for whole 

faces than for any of the other face manipulation conditions that displayed an 

inversion effect.  One explanation for this result was that in the whole face 

condition, participants were discriminating two sequentially presented famous 

faces that had slightly different face outlines (e.g., Michael Jordan followed by 

Samuel Jackson).  Previous research has found that the outlines of faces are 

used in face recognition (Bruce et al., 1999; Young, Hay, McWeeny, Flude, & 

Ellis, 1985).    In contrast, the bucket provided a constant outline for all the 

features that were placed on them.  The variation in face outlines in the whole 

face condition may therefore have served as an additional feature that made the 

task easier when the face was inverted. As a result, it was easier to discriminate 

whole faces than three, four, six, and bucket feature manipulation conditions.  If 

this explanation for the smaller inversion effects for whole faces is correct, one 

would predict that the whole face inversion effect would be larger when the six-
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features were placed on a standardized face outline than when they are 

presented in the manner of Experiment 3.  

Experiment 4 

 Experiment 4 attempted to replicate the effects in Experiment 3 using non-

face stimuli, specifically houses.  Additionally, Experiment 4 tested whether the 

use of structurally dissimilar features across house stimuli (e.g., “House 1” has 

rectangular windows and “House 2” has round windows) may be the reason why 

researchers have failed to find either a house inversion effect (Carbon & Leder, 

2006) or a part identification advantage for the parts of a house in the context of 

a whole house as observed for faces (Tanaka & Farah, 1993).  Houses were 

chosen as the non-face stimuli for Experiment 4 because previous research has 

used houses as a control for faces. 

 Tanaka and Farah (1993) failed to find an advantage for the recognition of 

a part of the house in the context of a whole house.  One reason why Tanaka 

and Farah may have failed to find a feature identification advantage for parts of a 

house presented in the context of a whole house is because the features they 

used to construct their houses were structurally dissimilar.  For example, Figure 

21 presents some of the stimuli Tanaka and Farah (1993) used in their house 

experiment; while one door has three “curved edges”, the other two doors only 

have “straight edges”.  The coordinate relations hypothesis would predict that a 

coordinate representation would not be required to perform recognition tasks in 

which the individual features between two objects activate different “geons” 

(Biederman, 1987; e.g., a round window compared to a rectangular window).  
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However, the coordinate relations hypothesis would predict that a coordinate 

representation is necessary for recognition tasks that require participants to 

differentiate objects whose individual features activate the same geons (i.e., 

objects that share the same structural description).   

 
Figure 21.  Sample house features used in Tanaka and Farah’s experiment (1993). Note that 
many of the features produce different geons (Biederman, 1987) in the windows.  For example, 
the small window on the left is the only small window that contains one curved edge, while the 
small middle window has no curved edges and is not symmetrical through any cross-sections, 
and the small window on the right expands and contracts over the course of its axis.  

  
 Experiment 4 investigated the inversion effects for one-feature (front 

door), three-feature (front door and two windows), five-feature (front door and 

four windows), six-feature (front door, four windows, and a garage door), and 

whole house stimuli.  Participants determined whether two sequentially 

presented house stimuli were identical or different.  In half of the trials the two 

house stimuli were identical, and in the remaining half of the trials the two house 

stimuli were different.  In the different trials, half of the trials required participants 

to discriminate house stimuli with structurally different features (e.g., a house 
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stimulus with a “curved window” was presented followed by a house stimulus 

with “rectangular window”), and the remaining different trials required participants 

to discriminate house stimuli with structurally similar features (i.e., the two house 

stimuli had identical structural descriptions).  For the identical trials, the 

coordinate relations hypothesis predicts that the inversion effect should 

progressively increase as the number of features to be coded by the coordinate 

representation increases. For the different trials, the coordinate relations 

hypothesis only predicts a significant increase in the inversion effect when 

participants have to discriminate house stimuli that share structural descriptions.  

The coordinate relations hypothesis predicts no inversion effect for different trials 

in which the features between the house stimuli are structurally dissimilar.  Note 

that Tanaka and Farah (1993) would not predict an inversion effect for any of the 

trial types.  

Method 

 Unless noted, all procedures in Experiment 4 are the same as those in 

Experiment 3. 

Participants 

 Ninety-eight undergraduate students from the Iowa State University 

subjects’ pool participated in the experiment for course credit.  All subjects 

reported normal or corrected-to-normal vision.  The participants consisted of 50 

females and 48 males.  The mean age of the participants was 19.9 (SD=2.6). 

Apparatus 

 Stimuli for the Experiment 4 consisted of 24 houses that were constructed 
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in Photoshop CS5.1.  All the houses that were constructed were initially 

produced in a canonical upright view. The houses were paired so that each 

house would have structurally similar features with another house that differed 

only in the size of the features.  Four other feature manipulations were 

constructed for each of the 24 houses using Photoshop CS5.1.  The additional 

feature manipulations produced stimuli that consisted of one-feature (front door), 

three-features (front door and two windows), five-features (front door, and four 

windows), and six-features (front door, four windows, and garage door; see 

Figure 22 for sample stimuli). The distance of the features from one another were 

held constant across all of the feature manipulations for each house (e.g., the 

distance of the front door to the lower-left window were the same in the 3-feature 

manipulation for “house 1” as well as the 5-feature manipulation for “house 1”).  

Inverted copies of all the house stimuli were also made. 

 

 
Figure 22.  All of the stimuli made for one of the twenty-four houses in the Experiment 4.  All of 
the houses shared the same template (i.e., they all shared the same house outline, roof, bricks, 
front door step, and siding).   
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Procedure 

 Presentation of the stimuli was self-paced.  The participants were 

instructed that they would be presented with a fixation cue, followed by a house 

stimulus, followed by a mask, and then presented with a second house stimulus.  

Participants were instructed to press the spacebar to begin each trial. Upon 

pressing the spacebar, a fixation cue was presented for 500 ms, followed by the 

presentation of a house stimulus for 250 ms followed by a pattern mask for 500 

ms, followed by the presentation of a second house stimulus that remained on 

the screen until the participant response (see Figure 23).  As in Experiment 3, the 

second stimulus in Experiment 4 was displaced to one of four locations.  Half of 

the trials were identical trials and half of the trials were different trials.  In the 

different trials, half of the time the two different trials shared structural 

descriptions (i.e., the features had identical non-accidental properties) and half of 

the time the two different house stimuli did not share the same structural 

descriptions (e.g., one of the house stimuli may have a “curved edge” on the 

window, while the other house stimuli has a “rectangular” window). 
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Figure 23. Event sequences for the identical and different trials used in Experiment 4.  The house 
stimuli presented for any given trial can be upright or inverted and consist of one-feature (the front 
door), three-feature (the front door and two windows), five-feature (the front door and four 
windows), six-feature (the front door, four windows, and a garage door), or whole houses. 

Each participant saw 480 experimental trials.  Participants were presented 

with all twenty-four house stimuli, at each manipulation condition (whole house, 

one-feature, three-features, five-features, and six-features), at each orientation 

(upright or inverted), and each trial type (identical or different) condition.  Half of 

the different trials required participants to discriminate two house stimuli that had 

identical structural descriptions (e.g., they had structurally similar features), and 

half of the different trials required participants to discriminate two house stimuli 

with different structural descriptions (e.g., a round window on one house and a 

rectangular window on another house).  The house stimuli used for the two 

different trial types were randomly assigned for a particular block and 

counterbalanced across every two blocks (e.g., in Block 1, “House 1” was 
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compared to “House X” with the same structural description, and in Block 2, 

“House 1” was compared to “House Y” with a different structural description).  

The order of the trials was randomly chosen for each participant.  For any given 

trial, the first stimulus and second stimulus on a trial were matched for orientation 

(e.g., upright then upright) and number of features (e.g., if a five-feature house 

stimulus is presented, it was followed by another five-feature house stimulus).   

Participants were presented with 40 practice trials prior to the experiment 

using the same presentation conditions used during the actual experiment.  Each 

participant saw two practice trials for any given feature manipulation (five 

conditions) X orientation (upright or inverted) X trial type condition (identical or 

different).  Half of the different practice trials required participants to discriminate 

house stimuli with the same structural description, and half of the different trials 

required participants to discriminate house stimuli with different structural 

descriptions.  

Results 

Fifteen participants were not included in any of the data analysis because 

they did not perform above 65% accuracy in all five feature manipulation 

conditions.  In order to maintain the same presentation sequence conditions as in 

Experiment 3, Experiment 4 lowered the performance accuracy cutoff to 65% 

(rather than 70%) due to the increased difficulty of the task.  As in Experiments 2 

and 3, Experiment 4 had many data points for each condition of interest.  As a 

result, all reaction times that fell outside of three standard deviations from each 

participant’s orientation x manipulation condition mean were removed (fewer than 
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3% of the data points were removed). 

House Inversion Effect 

A new dependent variable was created for each participant that measured 

each participant’s house inversion effect for each of the feature manipulation 

conditions (whole house, one-feature, three-features, five-features, and six-

features). The inversion effect for reaction times and error rates was calculated 

for each participant in the same manner as Experiment 4.  See Appendix I for the 

mean upright and inverted reaction times for different trial types and Appendix J 

for the mean upright and inverted percentage error rates for the different trial 

types.  See Appendix K for the mean upright and inverted reaction times and 

percentage error rates for the same trials. 

Different trials.   

The inversion effects for reaction time and error rates in Experiment 4 

were examined for the two different trial conditions (i.e., the different trials in 

which the two house stimuli had identical structural descriptions and the different 

trials in which the two different house stimuli had different structural descriptions) 

in order to test whether the coordinate relations hypothesis could explain why 

previous researchers (e.g., Tanaka & Farah, 1993) failed to find an effect of 

inversion for houses.  The coordinate relations hypothesis predicts that previous 

researchers failed to find a house inversion effect because their houses did not 

share the same structural description.  The coordinate relations hypothesis 

predicts a house inversion effect only for different trials in which the two house 

stimuli share structural descriptions.  Further, in such trials, the coordinate 
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relations hypothesis predicts that the house inversion effect should increase as 

the number of features to be coded by a coordinate representation increases.  

Reaction time and error rates of the face inversion effect were examined 

for Experiment 4 using a factorial within-participants analysis of variance 

(ANOVA) with feature manipulation (one-feature, three-feature, five-feature, six-

feature, and whole houses) and trial type (same structural description vs. 

different structural description) as the independent variables.  

Reaction time.  There was not a reliable interaction for reaction times 

between trial type and feature manipulation F (4, 320) = 1.93, p > 05.  Figure 24 

presents the house inversion effect for reaction time for each feature 

manipulation condition for the two different trial conditions.  There was not a 

reliable main effect of trial type F (1, 80) =0.06, p > 05.   There was not a reliable 

main effect of feature manipulation F (4, 320) =1.28, p > 05.  
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Figure 24. The graph displays the mean reaction time house inversion effects for both different 
trial conditions (same and different structural conditions) for each of the feature manipulation 
conditions.  Standard error bars are shown for each feature manipulation condition.  Note.  One = 
front door; Three = front door & two windows; Five = front door & four windows; Six = front door, 
four windows, & garage door; Whole = whole house. 

Error rates.  Given the large variance in the number of data points for 

reaction time, and the fact that some participants in Experiment 4 were unable to 

accurately detect differences between different stimuli in the same structural 

description conditions (i.e., some participants made over 50% errors in a given 

condition), error rate was a better measure of the house inversion effect in 

Experiment 4 than reaction time.  Specifically, if orientation differentially affects 

one’s ability to discriminate houses, then there should be a difference in error 
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rates between upright and inverted house stimuli.  For instance, if a participant 

was at 60% errors for inverted one-feature houses in the same structural 

description different trials and they were at 40% errors for upright one-feature 

houses in the same structural description different trials, then the 20% difference 

in error rate would suggest there is a recovery in the ability for that participant to 

discriminate one-feature house stimuli when presented upright.    

There was an interaction that was approaching significance between trial 

type and feature manipulation F (4, 320) = 2.37, p = .052.  Figure 25 presents the 

house inversion effect for error rates for each feature manipulation condition for 

the two different trial types.  As the number of features of a house increased, the 

house inversion effect displayed an increase for the same structural description 

trials but not for the different structural description trials.  The trial type main 

effect approached significance, F (1, 80) =3.92, p = 0.051.  
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 Figure 25. The graph displays the mean error rate house inversion effects for both different trial 
conditions (same and different structural conditions) at each of the feature manipulation 
conditions.  Standard error bars are shown for each feature manipulation condition.  Note.  One = 
front door; Three = front door & two windows; Five = front door & four windows; Six = front door, 
four windows, & garage door; Whole = whole house. 

There was a reliable main effect of feature manipulation, F (4, 320) =4.46, 

p < 01.  A posthoc pairwise comparison using the Bonferroni adjustment was 

used to compare the error rates for the feature manipulation conditions.  One-

feature houses showed a reliably lower house inversion effect than all the other 

feature manipulation conditions.  No other pairwise comparisons were reliably 

different. 
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Same Trials.  The reaction time data for the same trials in Experiment 4 

showed a reliable main effect of feature manipulation, F (4, 320) =2.91, p < .05.  

Figure 26 presents the house inversion effect for reaction time for each feature 

manipulation condition.  A posthoc pairwise comparison using the Bonferroni 

adjustment was used to compare the house inversion conditions.  None of the 

feature manipulation conditions differed reliably from one another.  There was not 

reliable main effect of feature manipulation on the house inversion error rates F 

(4, 320) =1.74, p > .05 (see Figure 27).  

 
Figure 26. Graph A displays the mean reaction time and Graph B displays the mean error rate 
house inversion effects for the same trials for each of the feature manipulation conditions.  
Standard error bars are shown for each feature manipulation condition. Note.  One = front door; 
Three = front door & two windows; Five = front door & four windows; Six = front door, four 
windows, & garage door; Whole = whole house. 

Raw Error Rate for Different Trials  

  Just as in Experiment 3, the data from Experiment 4 was examined 

to determine if the reliable differences observed for the constructed house 

inversion dependent variable were caused by floor and/or ceiling effects on either 

the upright or inverted versions of the stimuli.  Table 2 presents the mean 
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percentage error for each feature manipulation x orientation x different trial type 

condition.  Table 2 suggests that the error rates for the one and whole house 

conditions for the same structural description condition were at chance.  

However, it is important to note that because the two images being compared 

shared the same structural description, it is possible that the coordinate 

representation for one feature and whole conditions were not tuned well enough 

to detect a difference between the two houses.  Nevertheless, if there were a 

reliable difference in the error rates between inverted and upright houses at a 

given condition, it would suggest that presentation of the house at a given 

orientation affects how well one can discriminate the stimuli.   

Table 2 
Mean Pct. Error for Upright and Inverted at Each House Condition                     
for Each Different Trial Type 
  SSD  DSD 

Image Type    U    I       U      I 

One   53.29 49.18  25.6    22.1   

Three   19.34 17.8  8.9    8.2   

Five    27.47 28.81  7.4    7.7   

Six 

Whole 

  33.54 38.37  9.9    10.6   

 49.69 55.04 16.3    14.2 

 
Note.  SSD = same structural description; DSD = different structural description; U = upright; I = 
inverted; One = front door; Three = front door & two windows; Five = front door & four windows; 
Six = front door, four windows, & garage door; Whole = whole house. 

Discussion 

 Experiment 4 failed to support the predictions made by the holistic 
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representation hypothesis (Tanaka & Farah, 1993). Specifically, there was a 

main effect of feature manipulation for the different trials’ error rates.  

Additionally, there was an interaction that was approaching significance across 

trial type and feature manipulation condition error rates.  As discussed in the 

Introduction to Experiment 4, Tanaka and Farah would not predict an effect of 

inversion on house recognition, but Experiment 4 clearly demonstrated such an 

effect. 

  The coordinate relations hypothesis (Cooper & Wojan, 2000) predicted 

that the house inversion effect would grow larger for the different trials in which 

stimuli had the same structural description as the number of features increased, 

but that inversion would have less of an effect on different trials in which the 

stimuli had different structural descriptions. Consistent with the predictions of the 

coordinate relations hypothesis, the house inversion effects on the different trails 

approached significance for the interaction between trial type (same structural 

description vs. different structural description) and feature manipulation 

conditions for error rates.  

 One unforeseeable limitation of Experiment 4 is that the task was so 

difficult that a number of participants were excluded from the final analysis (a 

pilot study was conducted in which all participants were above 85% accuracy for 

all the trial types, but participants in the actual experiment performed much 

worse).  Although, 113 participants took part in Experiment 4, fifteen participants 

were removed because they did not achieve above 65% accuracy for all the 

feature manipulation conditions.  Another seventeen participants were excluded 
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because they did not have a data point at one of the same structural condition 

trials.  It was predicted that the house inversion effects for Experiment 4 would be 

smaller than face inversion effects observed in Experiment 3.  The rationale for 

this hypothesis is that because participants do not have as much experience 

discriminating houses as they do faces, their coordinate representation would not 

be as finely tuned for upright houses as their coordinate representation for faces.  

As a result, it was anticipated that the house inversion effect would be smaller 

than the face inversion effect observed in Experiment 3, and in consequence, 

Experiment 4 would require more participants than Experiment 3 to ensure 

adequate power.  It is possible that the marginally significant interaction for error 

rates between trial type and feature manipulation that was approaching 

significance would become reliable with a greater number of participants.  

Although not of great theoretical interest, the same trials in Experiment 4 

displayed a very odd pattern of results in which subjects were actually faster and 

more accurate at performing the task on the same trials with houses when they 

were upside down rather than right side up.  One possible explanation for the 

obtained data could be that there was a response bias for participant’s to 

respond “same” on inverted trials more so then upright trials (see the tables in 

Figure 27).  As the tables in Figure 28 show, subjects showed a stronger bias to 

say “Same” when the houses were inverted (in which 69.3% of all responses 

were “Same”) then when the houses were upright (in which 55.2% of all 

responses were “Same”). 
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Figure 27.  The mean percentage of the time participants responded ”same” or “different” for the 
same and different trials collapsed across all feature manipulation conditions.  Participants were 
more biased to respond “same” for inverted house stimuli than they were for upright house 
stimuli.   

An alternative explanation for the increased speed to respond to inverted 

house stimuli over upright house stimuli for the same trials is that, because the 

only differences between the stimuli were the features, it is possible that the 

visual system attempted to establish a coordinate representation of the house 

stimuli when the stimuli were right side up (because such a code is obligatory for 

any known stimulus), but the visual system did not attempt to code any type of 

relations when the house stimuli were presented upside down.  When the house 

stimuli were presented upside down, participants may have relied purely on 

differences in the features (with no coding of relations) in order to make a 

response. 
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GENERAL DISCUSSION 

 The primary purpose of the four experiments presented in this dissertation 

was to determine the nature of the representation that causes the face inversion 

effect.  Specifically, the coordinate relations hypothesis (Cooper & Wojan, 2000) 

predicts that the representation of a face is not qualitatively different from the 

representation of any non-face object that requires coordinate relations to 

recognize it.  The coordinate relations hypothesis predicts that face-like effects 

should be observed for identifying non-face objects when the structural 

descriptions of the objects to be recognized are the same.  Four experiments 

tested:  whether the representation of faces is qualitatively different than the 

representation of non-face stimuli; whether a holistic representation (Tanaka & 

Farah, 1993; Maurer et al., 2002) is necessary to explain face inversion effects; 

and whether the coordinate relations hypothesis could predict when inversion 

effects would be observed for non-face stimuli and consequently explain why 

some researchers have failed to find face-like effects for non-face stimuli (e.g., 

houses). 

Experiment 1 was conducted to determine whether the rotation function 

for faces was qualitatively different than the rotation function for animals and 

objects.   Experiment 1 displayed an inverted-U shaped rotation function for the 

recognition of faces that was significantly steeper than that for animals and 

objects.  Further, Experiment 1 failed to replicate the inverted-U shaped rotation 

function for animals and the M-shaped rotation functions for objects reported by 

Cooper and Brooks (2004).  The results of Experiment 1 failed to support Cooper 
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and Wojan’s (2000) proposal that the face inversion effect is simply a 

consequence of the fact that faces show an inverted “U” rotation function that 

peaks at 180 degrees while objects show an “M” shaped rotation function that 

has a dip at 180 degrees. 

Experiment 2 attempted to replicate the results of Experiment 1 using a 

categorization task that was less noisy and allowed for the collection of more 

data.  Experiment 2 displayed a significantly steeper rotation function for faces 

than for animals.  Consistent with the results reported by Cooper and Brooks 

(2004), an inversion effect was observed for animals.  However, the M-shaped 

rotation function for objects reported by Cooper and Brooks was not observed.  

The results obtained by Experiments 1 and 2 failed to support Cooper and 

Wojan’s (2000) conjecture that the rotation function for animals would be parallel 

to the rotation function for faces and suggests there is something unique about 

faces.   Additionally, both experiments failed to replicate the M-shaped rotation 

function for objects that has been produced by many studies (e.g., Cooper & 

Brooks, 2004; Jolicoeur, 1985; Jolicoeur, 1988; Jolicoeur & Milliken, 1989; 

McMullen & Farah, 1991; McMullen & Jolicoeur, 1990). 

Experiment 3 tested whether a holistic representation, as defined by 

Tanaka and Farah (1993), or a coordinate representation, as defined by Cooper 

and Wojan (2000), better predicted how the number of features one has to 

discriminate would influence the size of the inversion effect.  Whereas the holistic 

representation hypothesis predicted that no inversion effects would occur except 

when a whole face was presented, the coordinate relations hypothesis predicted 
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the inversion effect would increase as the number of features to be coded by the 

coordinate representation increased.  Experiment 3 found inversion effects in the 

same trials for error rates and reaction times for three-feature, four-feature, six-

feature, six-features placed on a bucket, and whole faces.  Further, for the same 

trials, six features placed on a bucket displayed a greater inversion effect in error 

rates and reaction times than three, four, six, and whole faces. Consequently, the 

results of Experiment 3 failed to support the holistic representation hypothesis of 

Tanaka and Farah.   Although not all of the feature conditions showed reliable 

face inversion effect differences, the pattern of results obtained were consistent 

with the predictions made by coordinate relations hypothesis (the failure to find 

reliable differences in all the feature conditions may have been due to a lack of 

sufficient power).   

Experiment 4 tested whether the coordinate relations hypothesis could 

explain why some studies (e.g., Carbon & Leder, 2006; Tanaka & Farah, 1993) 

have failed to find face-like effects for house recognition.  House stimuli were 

created that varied in their number of features and in their structural descriptions.  

The coordinate relations hypothesis predicted that house inversion effects would 

only be observed for different trials in which the two house stimuli being 

discriminated had identical structural descriptions.  The coordinate relations 

hypothesis did not predict a house inversion for different trials in which the two 

house stimuli being discriminated did not share structural descriptions.  The 

holistic representation hypothesis proposed by Tanaka and Farah, predicted no 

house inversion for any trial conditions because they posit that holistic 
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representations are responsible for the face inversion effect and that houses do 

not activate a holistic representation.  Experiment 4 found an interaction that was 

approaching significance between feature manipulation and different trial type for 

error rates, which would likely become statistically significant with the inclusion of 

more participants.  The pattern of the interaction was consistent with the 

predictions made by the coordinate relations hypothesis.   An additional result 

that is incompatible with the predictions of the holistic representation hypothesis 

was that there was a reliable main effect of feature manipulation for error rates in 

the different trials in Experiment 4.  As in Experiment 3, the results of Experiment 

4 failed to support the holistic representation’s explanation of the face inversion 

effect. 

What Form of Representation Causes the Face Inversion Effect? 

The results obtained from the current set of experiments suggest that 

there is something unique about the recognition of faces compared to non-face 

stimuli.  Specifically, the inversion effects observed for faces were significantly 

larger than the inversion effects observed for animals and houses.  What 

accounts for the size of the face inversion effect and how does it differ from the 

non-face stimuli tested in the current study? 

Tanaka and Farah (1993) proposed that faces are processed holistically 

meaning that they are “represented without an internal part structure”.  Tanaka 

and Farah proposed that holistic representations are unique to faces and are 

what is disrupted when faces are inverted.  In accordance with the single unit 

recording literature discussed in the Introduction (e.g., Gross, 1992; Perrett et al., 
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1998; Rolls, 2000; 2007), Experiment 3’s results suggest that a holistic 

representation is not needed to explain face inversion.  Further, the holistic 

representation proposed by Tanaka and Farah cannot explain why the face 

inversion effect increased as the number of face features to be coded increased 

when presented outside the context of a whole face.  Additionally, the holistic 

representation theory cannot explain why placing six features of a face on a 

bucket would produce the largest inversion effects.  Finally, if a holistic 

representation is unique to faces and is responsible for the face inversion effect, 

then why did Experiments 2 and 4 display inversion effects for non-face stimuli?  

An inversion effect was observed for animals in Experiment 2 and houses 

showed substantial inversion effects in Experiment 4.  Taking the results of all 

the experiments reported here together, the holistic representation theory is of no 

utility in predicting the conditions when a particular recognition task would show 

an inversion effect.  

The results from Experiments 1 and 2 failed to support Cooper and 

Wojan’s (2000) hypothesis that the face inversion effect is due to the rotation 

function for faces being “Upside Down U” shaped while the rotation function for 

objects is “M” shaped. However, the results of Experiments 3 and 4 displayed 

inversion effects that are exactly as would be predicted if a coordinate 

representation was being used to perform the task.  Nevertheless, the results of 

Experiments 1 and 2 are clear that there is something different about the 

representation of faces that causes them to be more affected by rotation than 

other objects.  The next logical question to ask is what differences exist between 
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the coordinate representations used to recognize a face and those that are used 

to recognize other objects (such as the animals in Experiments 1 and 2) that 

would account for their different rotation functions?  

Based on previous research and the results presented in the current 

study, it appears that there are three factors responsible for the size of the 

inversion effects for a particular class of stimuli.  First, it appears that inversion 

effects are more likely to be observed as the precision required to recognize an 

object using a coordinate representation increases.  Second, inversion effects 

are larger when the amount of visual information to be coded by a coordinate 

representation increases.  Third, inversion effects are larger, and more likely to 

be observed, as the amount of experience one has coding coordinate 

representations of visually similar stimuli increases.   Each of these factors will be 

discussed in turn. 

Experiment 3 suggested that the size of the inversion effect is not only 

dependent upon the amount of visual information to be coded by a coordinate 

representation, but also dependent upon the amount of precision required by the 

coordinate representation to discriminate faces.  Specifically, face inversion 

effects were smaller for whole faces than three-feature, four-feature, and six-

feature faces even though whole faces contained a greater amount of visual 

information.  The major difference between the whole face stimuli, and other face 

stimuli used in Experiment 3, was that the whole face stimuli contained face 

outlines that varied across stimuli (i.e., the participants’ coordinate representation 

for whole faces could rely on the differences in head outlines to discriminate 
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faces more accurately).  As demonstrated in Experiment 3, the largest inversion 

effects were observed when the precision required to discriminate faces was 

increased by placing the six features of a face on a bucket.  I predict that larger 

inversion effects would be observed than the three-feature, four-feature, and six-

feature face conditions if the six features of a face were placed on standardized 

face outline—increasing both the degree of precision and the amount of visual 

information to be coded by a coordinate representation.  This prediction is 

supported by previous research that has found larger inversion effects for 

standardized faces (i.e., the face outlines did not change across face stimuli) 

than whole faces that were not constructed with the same face outline (for 

reviews, see McKone & Kanwisher, 2009; Rossion, 2008). 

How precisely the locations of the primitives must be coded to discriminate 

faces and objects can not only contribute to the size of the face inversion effect, 

but also contributes to the size of other face-associated effects (i.e., the N170).  

As discussed in the Introduction, Thierry et al. (2007) tested how the degree of 

interstimulus perceptual variance (ISPV) for face and non-face stimuli affected 

the N170 (a face-related ERP component).   Thierry et al. found that the 

conditions in their experiment that required fine coding of the locations of the 

primitives produced a larger N170 than conditions in which only coarse coding 

was required.  The evidence suggests that one cause of the greater inversion 

effects observed for face recognition than for other tasks is that faces require 

more precise coding of the locations of the primitives in the representation than 

the recognition of other classes of objects.  The relatively coarse coding (relative 
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to faces) of the locations of the primitives required to differentiate animals in 

Experiments 1 and 2 likely contributed to the smaller inversion effects observed 

for animals than for faces.  Based on this logic, it is predicted that the inversion 

effect observed for animals in Experiment 2 would be larger if participants had to 

discriminate animals that required greater precision in the coordinate 

representation (e.g., the categorization task could require participants to 

discriminate only horses and donkeys).     

Experiments 3 and 4 suggest that another important contributor to the size 

of the inversion effect is the amount of information to be coded by a coordinate 

representation.  Based on the results of Experiments 3 and 4, for face and object 

stimuli that have been previously coded by a coordinate representation at a 

standard upright orientation, the inversion effects become larger as the number 

of features to be coded by the coordinate representation increases. Consistent 

with studies using single unit recordings (e.g., Perrett et al., 1998; Rolls, 2007), 

Experiments 3 and 4 both demonstrated that the inversion effect becomes larger 

as the number of features to be coded by a coordinate representation increases. 

Finally, the literature on the face inversion effect suggests that inversion 

effects will become larger as the participant gains expertise discriminating a 

particular class of stimuli.  Of the stimuli used in the experiments reported here, 

participants have had far more experience forming coordinate representations of 

faces than of animals and houses.  The literature on the face inversion effect 

suggests that the lack of experience in coding coordinate representations for the 

animals and objects also contributed to their decreased inversion effect. Previous 
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studies that have found that experience with a novel set of stimuli, called 

“Greebles”, displayed inversion effects for experts, but not novices (e.g., Gauthier 

& Tarr, 1997; Gauthier et al., 1999).   

Future Directions 

 The interaction between feature manipulation and trial type (same 

structural description vs. different structural description) that was predicted by the 

coordinate relations hypothesis in Experiment 4 approached significance, but the 

experiment appeared to lack sufficient power to reach statistical significance.  

Future research should try to replicate Experiment 4, but either collect more data, 

or make the experiment to easier for participants in order to lift performance off 

the floor.  The collection of more data for Experiment 4 is planned.  

 Based on the research reported here and the previous literature, three 

variables were proposed in the previous section as collectively determining the 

size of the inversion effects for a particular recognition task:  the amount of 

precision in the coordinate representation required to discriminate the stimuli 

(greater precision leads to a greater inversion effect), the number of features that 

need to be coded to discriminate the stimuli (larger number of features leads to a 

greater inversion effect), and the amount of experience the observer has at 

making the discrimination (more experience leads to a larger inversion effect).  In 

order to test whether these three variables can, in fact, be used to predict the 

size of the inversion effect for a particular recognition task, future investigations 

should examine the effects of inversion while manipulating each of these 

variables.  For example, one study could be constructed in which participants are 
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first trained to learn a set of nonsense objects at a particular upright orientation 

over repeated training sessions.  The study would manipulate the participant’s 

experience with the nonsense objects by assigning different groups of 

participants to different numbers of training trials.  The nonsense objects would 

be constructed such that the number of features varied across different objects.  

For example, the nonsense stimuli could be constructed so that they were made 

up of three, five, and six features.  Further, the nonsense stimuli for each feature 

manipulation condition could also vary in the amount of precision that would be 

necessary in order to discriminate different nonsense objects. For example, 

some nonsense groups of stimuli would be constructed so that the precision 

required to discriminate them would be low (i.e., there would be large differences 

in the coordinate representations of the stimuli), and some nonsense groups of 

stimuli would be constructed so that precision required to discriminate them 

would be high (i.e., there would be very small differences in the coordinate 

representations of the stimuli). 

 If the previous paragraph’s proposed study were carried out, it is predicted 

that the largest inversion effects would be observed by participants in the high 

experience condition for stimuli with the greatest number of features in the high 

precision nonsense stimuli condition.  Furthermore, it is predicted that there 

would be reliable main effect of inversion in error rates and reaction time for the 

three independent variables (experience, feature number, and degree of 

precision).  If the proposed experiment were conducted, it would be the first time 

in which precision, feature number, and experience would be tested in the same 
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experiment.  More importantly, if the proposed experiment were able to induce 

face-like inversion effects for the nonsense stimuli, it would be the first 

experiment to demonstrate that non-face stimuli (e.g., nonsense stimuli) can 

produce inversion effects similar to those observed for faces. 
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APPENDIXES 

Appendix A: Experiment I Object List 

1 Apple 37 Motorcycle 
2 Backpack 38 Mug 
3 Banana 39 Bus 
4 Barn 40 Canteen 
5 Bathroom Scale 41 Fishing Pole 
6 Bathtub 42 Pistol 
7 Bike 43 Pitcher 
8 Calculator 44 Pizza 
9 Camera 45 Rake 

10 Can Opener 46 Rollerblade 
11 Car 47 Gazeebo 
12 Cardboard Box 48 Sailboat 
13 Cell Phone 49 Sattelite Dish 
14 Chair 50 Saw 
15 Cheeseburger 51 Grill 
16 Backhoe 52 Shovel 
17 Computer 53 Skateboard 
18 Couch 54 Skillet 
19 Door 55 Sock 
20 Dresser 56 Stapler 
21 Bed 57 Sunglasses 
22 Fan 58 Table 
23 Guitar 59 Tea Kettle 
24 Hammer 60 Television 
25 Harmonica 61 Tennis Racket 
26 Helmet 62 Helicopter 
27 Hoop 63 Tricycle 
28 House 64 Trophy 
29 Iron 65 Typewriter 
30 Ironing Board 66 Umbrella 
31 Keyboard 67 Vacuum 
32 Lamp 68 Wagon 
33 Lawnmower 69 Water Cooler 
35 Lollipop 70 Jet Ski 
35 Blender 71 Paper Punch 
36 Microscope 72 Sewing Machine 
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Appendix B: Experiment I Face List 

1 Ashton Kutcher 37 Jessica Alba 
2 Ben Stiller 38 Angelina Jolie 
3 Bruce Willis 39 Ashley Olsen 
4 Kobe Bryant 40 Halle Berry 
5 George Bush 41 Beyonce 
6 Steve Carrell 42 Britney Spears 
7 Will Smith  43 Hillary Clinton 
8 George Clooney 44 Condoleeza Rice 
9 Robert DeNio 45 Catherine Zeta-Jones 

10 Denzel Washington 46 Ellen Degeneres 
11 Johnny Depp 47 Drew Barrymore 
12 Danny DeVito 48 Whoopi Goldberg 
13 Eddie Murphy 49 Gwent Stefani 
14 50 Cent  50 Salma Hayek 
15 Chris Farley 51 Hillary Duff 
16 Jim Carrey 52 Paris Hilton 
17 John Travolta 53 Jennifer Aniston 
18 Keanu Reeves 54 Jennifer Love-Hewitt 
19 Owen Wilson  55 Jessica Biel 
20 Leonardo DeCaprio 56 Jessica Simpson 
21 Matt Damon 57 Scarlett Johannson 
22 Mel Gibson 58 Kate Hudson 
23 Micheal Douglas 59 Katherine Heigl 
24 Michael Jordan 60 Katie Couric 
25 Morgran Freeman 61 Katie Holmes 
26 Conan O'Brien 62 Lindsay Lohan 
27 Barack Obama 63 Lucy Lui 
28 Orlando Bloom 64 Martha Stewart 
29 Neil Patrick-Harris 65 Megan Fox 
30 Brad Pitt 66 Rosie O'Donnell 
31 Ben Affleck  67 Sarah Palin 
32 Pee-Wee Herman 68 Natalie Portman 
33 Robin Williams 69 Queen Latifah 
35 Russel Crowe 70 Rihanna 
35 Samuel L. Jackson 71 Oprah Winfrey 
36 Paul Shore 72 Sarah Michelle Gellar 
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Appendix C: Experiment I Animal List 

1 Spider 37 Donkey 
2 Ant 38 Dove 
3 Anteater 39 Duck 
4 Antelope 40 Eagle 
5 Armadillo 41 Eel 
6 Baboon 42 Elk 
7 Badger 43 Emu 
8 Bat 44 Fly 
9 Bear 45 Fox 

10 Beaver 46 Frog 
11 Bee 47 Gecko 
12 Beetle 48 Gopher 
13 Squirrel 49 Hippopotamus 
14 Boar 50 Horse 
15 Buffalo 51 Humpback Whale 
16 Butterfly 52 Jaquar 
17 Camel 53 Llama 
18 Cardinal 54 Lobster 
19 Cat 55 Moth 
20 Cattepillar 56 Opossum 
21 Chameleon 57 Orangutan 
22 Cheetah 58 Owl 
23 Chicken 59 Parrot 
24 Chipmunk 60 Pheasant 
25 Cobra 61 Pig 
26 Cockroach 62 Pigeon 
27 Cow 63 Porcupine 
28 Coyote 64 Prairie Dog 
29 Crab 65 Rabbit 
30 Crane 66 Raccoon 
31 Crayfish 67 Rat 
32 Cricket 68 Rhinoceros 
33 Crow 69 Salamander 
35 Deer 70 Seal 
35 Dog 71 Shark 
36 Dolphin 72 Sheep 
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Appendix D: Experiment III Face List 

 Actors  Non-actors 
1 Jessica Alba 1 50 Cent 
2 Ashton Kutcher 2 Christina Aguilera 
3 Ben Affleck 3 David Beckham 
4 Halle Berry 4 Beyonce 
5 George Clooney 5 Britney Spears 
6 Robert DeNiro 6 George Bush 
7 Denzel Washington 7 Bill Clinton 
8 Drew Barrymore 8 Gwen Stefani 
9 Eddie Murphy 9 Enrique Iglesias 

10 Gwyneth Paltrow 10 Steve Jobs 
11 Harrison Ford 11 Kim Kardashian 
12 Hillary Duff 12 Katie Couric 
13 Jennifer Love Hewitt 13 Bill Maher 
14 Jessica Biel 14 Martha Stewart  
15 Katie Holmes 15 Michael Jordan 
16 Keanu Reeves 16 Richard Nixon 
17 Leonardo DiCaprio 17 Sarah Palin 
18 Sarah Michelle Gellar 18 Rihanna 
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Appendix E: Experiment III Animal List 

 North American  Elsewhere 
1 Bear 1 Camel 
2 Bison 2 Cheetah 
3 Blue Jay 3 Cobra 
4 Bobcat 4 Flamingo 
5 Deer 5 Hyena 
6 Dog  6 Lemur 
7 Donkey 7 Lion 
8 Fox 8 Llama 
9 Goose 9 Meerkat 

10 Horse 10 Panda 
11 Mountain Lion 11 Parrot 
12 Pheasant 12 Peacock 
13 Pig  13 Platypus 
14 Prairie Dog 14 Tasmanian Devil 
15 Rabbit 15 Warthog 
16 Raccoon 16 Water Buffalo 
17 Sheep 17 Wild Dog 
18 Squirrel 18 Zebra 
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Appendix F: Experiment III Object List 

 Inside objects  Outside objects 
1 Bathtub 1 Backhoe  
2 Bed 2 Barn 
3 Blender 3 Bike  
4 Chair 4 Bird Bath 
5 Computer 5 Car 
6 Couch  6 Coat 
7 Fan  7 Gazebo 
8 Ironing Board 8 Grill 
9 Lamp 9 Hoop 

10 Microscope 10 Jetski 
11 Mug 11 Lawnmower 
12 Pitcher 12 Motorcycle 
13 Sewing Machine 13 Rake 
14 Sink 14 Rollerblade 
15 Skillet 15 Sailboat 
16 Stapler 16 Tricycle 
17 Table 17 Umbrella 
18 Tea Kettle 18 Wagon 
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Appendix G: Mean Reaction Times (ms) for the Same Trials of Experiment 3 

  Upright  Inverted 

Image Type    M SE      M     SE 

Two   957.67 22.46  966.48    20.99   

Three   895.13 20.99  940.87    21.18   

Four    892.55 20.46  966.09    23.99   

Six 

Bucket 

  907.92 22.33  964.75    25.48   

 968.87 23.63 1046.5    24.13 

Whole   815.36 21.38  872.13    24.37  

Note.  Two = eyes; Three = eyes & mouth; Four = eyes, mouth, & nose; Six = eyes, mouth, nose 
& eyebrows; Whole = whole face; Bucket =eyes, mouth, nose, & eyebrows on bucket. 
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Appendix H: Mean Pct. Error Rates for the Same Trials of Experiment 3 

  Upright  Inverted 

Image Type    M SE      M     SE 

Two   15.6 1.17  14.4    .95   

Three   8.3 .64  15.9    1.00   

Four    8.0 .68  15.6    1.10   

Six 

Bucket 

  7.9 .75  15.2    1.00   

 9.7 .76 23.1    1.32 

Whole   3.4 .40  5.8    .65  

Note.  Two = eyes; Three = eyes & mouth; Four = eyes, mouth, & nose; Six = eyes, mouth, nose 
& eyebrows; Whole = whole face; Bucket =eyes, mouth, nose, & eyebrows on bucket. 
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Appendix I: Mean Reaction Times (ms) for the Different Trials of Experiment 4  

               SSD                    DSD 

Image  
Type 

    U (SE)    I (SE)     U (SE)          I (SE) 

One  1097.5 (37.4) 1015.8 (31.8) 914.0 (34.6)    887.7 (21.2)  

Three  990.2 (24.5) 955.6 (25.4) 874.7 (18.6)    865.9 (19.5)  

Five   1064.6 (28.4) 1074.6 (27.7) 871.4 (19.5)    877.2 (21.0)  

Six 

Whole 

 1090.1 (30.9) 1111.9 (38.2) 894.2 (21.1)    886.2 (24.4)  

 1179.5 (37.2) 1160.9 (39.3) 989.7 (26.2)    943.4 (23.3) 

Note.  SSD = same structural description; DSD = different structural description; U = upright; I = 
inverted; One = front door; Three = front door & two windows; Five = front door & four windows; 
Six = front door, four windows, & garage door; Whole = whole house. 
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Appendix J: Mean Pct. Error Rates for the Different Trials of Experiment 4  

            SSD                DSD 

Image  
Type 

  U (SE)    I (SE)     U (SE)          I (SE) 

One  53.3 (3.1) 49.2 (3.4) 25.6 (1.5)    22.1 (1.4)  

Three  19.3 (1.9) 17.8 (1.8) 9.0 (1.0)    8.2 (1.2)  

Five   27.5 (2.1) 28.8 (2.4) 7.4 (0.9)    7.7 (1.0)  

Six 

Whole 

 33.5 (2.6) 38.4 (38.2) 9.9 (1.3)    10.6 (1.1)  

 49.7 (2.4) 55.0 (2.8) 16.3 (1.7)    14.2 (1.5) 

Note.  SSD = same structural description; DSD = different structural description; U = upright; I = 
inverted; One = front door; Three = front door & two windows; Five = front door & four windows; 
Six = front door, four windows, & garage door; Whole = whole house. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

                                                                                                        
  

 

141 

Appendix K: Mean Reaction Time (ms) and Pct. Error Rates for the Same Trials 
of Experiment 4  

  Reaction Time        Error Rates 

Image  
Type 

  U (SE)    I (SE)         U (SE)          I (SE) 

One  823.9 (23.3) 785.1 (19.3) 9.9 (1.1)    7.3 (0.8)  

Three  916.3 (29.1) 868.2 (24.6) 12.3 (1.2)    11.3 (1.0)  

Five   974.3 (27.6) 944.3 (25.2) 15.0 (0.9)    12.1 (1.1)  

Six 

Whole 

 1000.9 (30.2) 993.5 (31.2) 16.1 (1.0)    12.5 (1.3)  

 1101.7 (33.3) 1023.6 (29.1) 20.8 (1.6)    15.7 (1.3) 

Note. U = upright; I = inverted; One = front door; Three = front door & two windows; Five = front 
door & four windows; Six = front door, four windows, & garage door; Whole = whole house. 
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